Star and Delta Connection.pdf

5,722 views 66 slides Sep 25, 2022
Slide 1
Slide 1 of 66
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66

About This Presentation

Very good information


Slide Content

INTRODUCTION
3
Star connections is generally used in long distance transmission lines as
insulation requirement is less in star connection.
Transmission Network

INTRODUCTION
4
Delta connections are generally used in distribution networks for short
distances.
Distribution Network

INTRODUCTION
5
Alternators and generators are usually star connected.
600 MW Turbo-Generator at power plant

INTRODUCTION
6
Transformer windings are connected in Star/Delta Connections.
A Three Phase Transformer with Name Plate

INTRODUCTION
7
Generating transformer near to power plant generator are connected in
star connection to provide grounding protection.
Generating Transformer

INTRODUCTION
8
AC motors winding are connected in star/delta connection depending on
requirement and application.
Three Phase Induction Motor Winding

INTRODUCTION
9
Star and Delta connections are used in starting of three phase induction
motors using STAR-DELTA Starter.
Star Delta Starter for Three phase Induction Motor

INTRODUCTION
10
Delta-Star Starters are installed in cement industries for high inertial load
applications.
Cement Industry

INTRODUCTION
11
Power capacitors in 3 phase capacitor bank connections are either delta
connected or star (wye) connected.
Delta connected capacitor bank

INTRODUCTION
12
The application of such connection is also used in high voltage direct
current (HVDC) systems.
Generating Transformer

INTRODUCTION
13
The application of such connection is also used in Wheatstone bridge
resistance measurement device.
Wheatstone Bridge

INTRODUCTION
14
STAR/Delta transformations and equivalent circuit calculations help in
simplification and understanding of complex electrical circuits.
Complex Electric Circuits

INTRODUCTION
15
Star/DeltaconnectionisanarrangementofpassiveelementsR,LandC
suchthattheformedshaperesemblesastaroradeltasymbol.
Theseconnectionareneitherseriesandnorparallel.
Suchconnectionsaresimplifiedusingstar-to-deltaordelta-to-star
conversion.
SuchconnectionsarefoundincomplexDCcircuits,fullbridge
rectifiers.
SuchconnectionshaslargerapplicationinthreephaseACsystem.

STARCONNECTION
16
AstarnetworkisrearrangedformofTee(T)network.

STAR/WYE(Y)CONNECTION
17
Threeendsofresistorsareconnectedinwye(Y)orstarfashion.A
commonnodepointofstarconnectionisknownasneutral.
N

STARCONNECTION
18
Threewaysinwhichstarconnectionmayappearinacircuit.

DELTACONNECTION
19
WhenthreeresistorsareconnectedinafashiontoformaclosedmeshΔ,
connectionformedisknownasDeltaConnection.

DELTACONNECTION
20
Threewaysinwhichdeltaconnectionmayappearinacircuit.

DELTATOSTARTRANSFORMATION
21
Threeresistors connectedindeltaformanditsequivalent
starconnectionisshownbelow.
Delta andits equivalent Star,
AB BC CA
RR and R

DELTATOSTARTRANSFORMATION
22
•Twoarrangementsshownareelectricallyequivalent.
•ResistancebetweenAandBforstar=ResistancebetweenAand
Bfordelta.
•Therefore,()
A B AB BC CA
RRRRR 
(1)()
AB BC CA
AB
AB BC CA
RRR
RR
RRR



(2)
||

DELTATOSTARTRANSFORMATION
23
•SimilarlyforresistancebetweentwoterminalsB-CandC-A,
(3)()
CA AB BC
CA
AB BC CA
RRR
RR
RRR



(4)()
BC CA AB
BC
AB BC CA
RRR
RR
RRR




DELTATOSTARTRANSFORMATION
24
•Theobjectiveistofind intermsof .
•Subtracting(3)from(2)andaddingto(4)weobtain,
(5)
(6)ABCA
A
AB BC CA
RR
R
RRR

 ,
A B C
RR and R ,
AB BC CA
RR and R BCAB
B
AB BC CA
RR
R
RRR

 CABC
C
AB BC CA
RR
R
RRR


(7)

DELTATOSTARTRANSFORMATION
25
•Easywaytorememberdeltatostartransformationis,

Product of two adjacent arms of
Any arm of star connection =
Sum of arms of

STARTODELTATRANSFORMATION
26
Threeresistors connectedinstarformationandits
equivalentdeltaconnectionisshownbelow
Star and its Equivalent Delta,
A B C
RR and R

STARTODELTATRANSFORMATION
27
•Dividing(5)by(6)weobtain,
•Dividing(5)by(7)weobtain,CAA
B BC
RR
RR
 ABC
CA
B
RR
R
R

(8)
(9)A AB
C BC
RR
RR
 ABC
AB
C
RR
R
R

(10)
(11)

STARTODELTATRANSFORMATION
28
•Substituting(9)and(11)into(5),
•Similarly,BC
BC B C
A
RR
RRR
R

(12)
(13)
(14)AB
AB A B
C
RR
RRR
R
 CA
CA C A
B
RR
RRR
R


STARTODELTATRANSFORMATION
29
•Easywaytorememberstartodeltatransformationis,
Resistance between two terminals of Δ=
Sum of star resistances connected to those terminals +
product of same two resistances divided by the third

STAR\DELTATRANSFORMATION
30
•IfastarnetworkhasallresistancesequaltoR,itsequivalent
deltahasallresistancesequalto?
•IfadeltanetworkhasallresistancesequaltoR,itsequivalent
starhasallresistancesequalto?

STAR\DELTATRANSFORMATION
31
•IfastarnetworkhasallresistancesequaltoR,itsequivalent
deltahasallresistancesequalto3R.
•IfadeltanetworkhasallresistancesequaltoR,itsequivalent
starhasallresistancesequaltoR/3.

32
SUMMARY

EQUIVALENTRESISTANCE
33
•Theequivalentresistanceofacircuitornetworkbetweenitsany
twopoints(orterminals)isthatsingleresistancewhichcanreplace
theentirecircuitbetweenthesepoints(orterminals).

DEFINITIONS
34
•STAR/DELTACIRCUITS:Thesecircuitsgenerallypossess
star/deltaconfigurationsandneedstobesimplifiedusingnecessary
transformationsandareconvertedintoseriesparallelcircuits.
NeitherSeries Nor ParallelCircuit

EQUIVALENTRESISTANCEOFSTAR/DELTACIRCUIT
35
•Thecircuitisacombinationofneitherseriesnorparallelcircuits.

EQUIVALENTRESISTANCEOFSTAR/DELTACIRCUIT
36
•RULE:Suchcircuitformstar/delta.Usestardeltatransformation
andconverttoequivalentseries-parallelcircuit.
•ChangingDeltaformedbypointsA,B,CintoequivalentStar,
•Thecircuitformedisnowcombinationofseries-parallelcircuit.
•Theseries-parallelcircuitisfurthersimplifiedtoseriescircuit./3
Y
RR
RR
RRR




EQUIVALENTRESISTANCEOFSTARDELTACIRCUIT
37
Thecircuitnowbecomesasimpleseries-parallelcircuitandcanbe
solvedeasily. A

EXERCISE/NUMERICAL ANALYSIS
38
Q.ConverttheYnetworktoanequivalentΔnetwork.

EXERCISE/NUMERICAL ANALYSIS
397.55
7.55 25
3
a
R ohms

  53
53 10
7.5
c
R ohms

 7.53
7.53 15
5
b
R ohms

 
Soln:

EXERCISE/NUMERICAL ANALYSIS
40
Q.ConverttheΔnetworktoanequivalentYnetwork.

EXERCISE/NUMERICAL ANALYSIS
41
Soln:1
1025
5
151025
bc
abc
RR
R ohms
RRR

  
  2
2515
7.5
50
ca
abc
RR
R ohms
RRR

  
 3
1510
3
50
ab
abc
RR
R ohms
RRR

  


EXERCISE/NUMERICAL ANALYSIS
42
Q.Usingdelta/startransformation,findequivalentresistanceacrossAC.

EXERCISE/NUMERICAL ANALYSIS
43
Soln:Deltacanbereplacedbyequivalentstar-connectedresistances,1
1020
2.86
104020
ABDA
AB DA BD
RR
R ohms
RRR

  
  2
1040
5.72
104020
ABBD
AB DA BD
RR
R ohms
RRR

  
  3
1040
11.4
104020
DABD
AB DA BD
RR
R ohms
RRR

  
 

EXERCISE/NUMERICAL ANALYSIS
44
Figurenowbecomes,  
(305.72)(1511.4)
2.86 18.04
305.721511.4
AC
R ohms
 
 
 

EXERCISE/NUMERICAL ANALYSIS
45
Q.CalculateequivalentresistanceacrossterminalsAandB.

EXERCISE/NUMERICAL ANALYSIS
46
Soln:ConvertinginnerSTAR(3ohms,3ohmsand1ohms)intoDelta.1
33
33 15
1
R ohms

 2
31
31 5
3
R ohms

 3
13
13 5
3
R ohms



EXERCISE/NUMERICAL ANALYSIS
47
Circuitnowbecomes,

EXERCISE/NUMERICAL ANALYSIS
48
Delta-connectedresistances1Ω,5Ωand8areconvertedinstar,'
1
184
1587
R ohms


 '
2
515
15814
R ohms


 '
3
8520
1587
R ohms




EXERCISE/NUMERICAL ANALYSIS
49
Circuitnowbecomes,45 2020
2.5 7.610
714 79
AB
R ohms
  
   
  
  
||

EXERCISE/NUMERICAL ANALYSIS
50
Q.CalculateequivalentresistanceacrossterminalsAandB.

EXERCISE/NUMERICAL ANALYSIS
51
Soln:ReplacinginnerSTARintoDELTA.

EXERCISE/NUMERICAL ANALYSIS
52
15.8ohmisinparallelwith5ohmand26.3ohmisinparallelwith
4ohm,circuitbecomes

EXERCISE/NUMERICAL ANALYSIS
53
Convertingupperdeltaintostar,

EXERCISE/NUMERICAL ANALYSIS
54
Nowequivalentresistancecanbecalculatedas,4.23
eq
R(3·8 + 2·98) || (1·99 + 3·5) + 1·2
ohms

EXERCISE/NUMERICAL ANALYSIS
55
Q.ObtaintheequivalentresistanceRabforthecircuitanduseitto
findcurrenti.

EXERCISE/NUMERICAL ANALYSIS
56
Soln:Inthiscircuit,therearetwoYnetworksandthreeΔnetworks.
Transformingjustoneofthesewillsimplifythecircuit.

EXERCISE/NUMERICAL ANALYSIS
57
WeconverttheY-networkcomprisingthe5-Ω,10-Ω,and20-Ωresistors
intodelta.1
510
510 17.5
20
R ohms

  2
520
520 35
10
R ohms

  3
1020
1020 70
5
R ohms

 
(comes in parallel with 12.5 Ω)
(comes in parallel with 15 Ω)
(comes in parallel with 30 Ω)

EXERCISE/NUMERICAL ANALYSIS
58
Combiningthethreepairsofresistorsinparallel,weobtain.(7.29210.5)21
17.79221
17.79221
ab
R
=9.632 ohms
  

 120
12.458
9.632
s
ab
v
iA
R
 
(12.5 || 17.5 Ω)
(15 || 35 Ω)
(30 || 70 Ω)
||

EXERCISE/NUMERICAL ANALYSIS
59
Q.DeterminetheloadcurrentinbranchEFinthecircuitshown.

EXERCISE/NUMERICAL ANALYSIS
60
Sol.ACGAformsdelta,Convertingittoequivalentstar.200500
111.11
900
AN
R ohms

 500200
111.11
900
GN
R ohms

 200200
44.44
900
CN
R ohms



EXERCISE/NUMERICAL ANALYSIS
61
Circuitcanberedrawnas111.11600711.11
NEF
R ohms  60044.44644.44
ND
R ohms 

EXERCISE/NUMERICAL ANALYSIS
62
BranchesNCDandNEFareinparallel,711.11||644.44=338ohms.
TotalcurrentIinthecircuit=100
0.222
111.11338
eq
V
IA
R
 

EXERCISE/NUMERICAL ANALYSIS
63
ToobtaincurrentinbranchEF,weapplycurrentdivisionformula.644.44
0.222
711.11644.44
0.1055
NCD
NEF
NCD NEF
R
II
RR
A




EXERCISE
64
Q.Asquareanditsdiagonalsaremadeofauniformcoveredwire.The
resistanceofeachsideis1Ωandthatofeachdiagonalis1·414Ω.
Determinetheresistancebetweentwooppositecornersofthesquare.

EXERCISE
65
Q.DeterminetheresistancebetweentheterminalsAandBofthenetwork.

EXERCISE
66
Q.Findthecurrentin10Ωresistorinthenetworkshownbystar-delta
transformation.

EXERCISE
67
Q.Usingstar/deltatransformation,determinethevalueofRforthe
networkshownsuchthat4Ωresistorconsumesthemaximumpower.

REFERENCES
68
[1]Charles.K.AlexanderandMatthewSadiku“FundamentalofElectricCircuits”,
McGraw-HillEducation,2PennPlaza,NewYork,NY10121,ch.2and3.
[2]EdwardHughes,JohnHiley,KeithBrownandIanMcKenzieSmithHughes
“Electrical&ElectronicTechnology”,PearsonEducationLimited,EdinburghGate,
England,ch.2and3.
[3]V.K.MehtaandRohitMehta“BasicElectricalEngineering”,S.Chand&Company
Pvt.Ltd.,RamNagar,NewDelhi,ch.2.
Tags