[15] A.S. Lundervold, A. Lundervold, An overview of deep learning in medical imaging focusing on MRI,
Zeitschrift fur Medizinische Physik 29 (2) (2019) 102e127.https://doi.org/10.1016/j.zemedi.2018.
11.002.
[16] T. Goswami, Chapter 16 - machine learning behind classification tasks in various engineering and
science domains, in: G.R. Sinha, J.S. Suri (Eds.), Cognitive Informatics, Computer Modelling, and
Cognitive Science, Academic Press, 2020, pp. 339e356.https://doi.org/10.1016/B978-0-12-819443-
0.00016-7.
[17] R. Iqbal, M.A.A. Murad, A. Mustapha, P.H.S. Panahy, N. Khanahmadliravi, An experimental study of
classification algorithms for crime prediction, Ind. J. Sci. Technol. 6 (3) (2013) 4219e4225.https://
doi.org/10.17485/ijst/2013/v6i3.6.
[18] S. Sathyadevan, M.S. Devan, S.S. Gangadharan, Crime analysis and prediction using data mining, in:
2014 First International Conference on Networks Soft Computing (ICNSC2014), August, 2014, pp.
406e412.https://doi.org/10.1109/CNSC.2014.6906719.
[19] E. Cantu-Paz, C. Kamath, Inducing oblique decision trees with evolutionary algorithms, IEEE Trans.
Evol. Comput. 7 (1) (2003) 54e68.https://doi.org/10.1109/TEVC.2002.806857.
[20] Y. Shin, L. Williams, Can traditionally fault prediction models be used for vulnerability prediction?
Empir. Software Eng. 18 (1) (2013) 25e59.https://doi.org/10.1007/s10664-011-9190-8.
[21] L.J. Muhammad, E.A. Algehyne, S.S. Usman, Predictive supervised machine learning models for
diabetes mellitus, SN Comput. Sci. 1 (5) (2020) 1e10.https://doi.org/10.1007/s42979-020-00250-8.
[22] Z. Noshad, et al., Fault detection in wireless sensor networks through the random forest classifier,
Sensors 19 (7) (April, 2019).https://doi.org/10.3390/s19071568.
[23] A. Fenerich, et al., Use of machine learning techniques in bank credit risk analysis, Rev. Int.
Me´todos Nume´ricos Ca´lculo Disen˜o Ing. 36 (3) (2020) 1e15.https://doi.org/10.23967/J.RIMNI.
2020.08.003.
[24] N.H.A. Halim, M.Y. Mashor, A.S.A. Nasir, R. Hassan, Performance Comparison between multilayer
Perceptron and fuzzy ARTMAP networks for acute leukemia detection, Int. J. Res. Rev. Comput. Sci.
2 (5) (2011) 1e7.
[25] M. Zareapoor, R. SeejaK., M. Alam, Analysis on credit card fraud detection techniques: based on
certain design criteria, Int. J. Comput. Appl. 52 (2012) 35e42.
[26] D.K. Renuka, T. Hamsapriya, M.R. Chakkaravarthi, P.L. Surya, Spam classification based on su-
pervised learning using machine learning techniques, in: 2011 International Conference on Process
Automation, Control and Computing, 2011, pp. 1e7.https://doi.org/10.1109/PACC.2011.5979035.
[27] S.S. Kshatri, B. Narain, Analytical study of some selected classification algorithms and crime pre-
diction, Int. J. Eng. Adv. Technol. 9 (6) (2020) 241e247.https://doi.org/10.35940/ijeat.f1370.089620.
[28] L. Mcclendon, N. Meghanathan, Using machine learning algorithms to analyze crime data, Mach.
Learn. Applicat.: Int. J. 2 (1) (2015) 1e12.https://doi.org/10.5121/mlaij.2015.2101.
[29] A. Natekin, A. Knoll, Gradient boosting machines, a tutorial, Front. Neurorob. 7 (2013) 21.https://
doi.org/10.3389/fnbot.2013.00021.
[30] F. Smach, C. Lemaıˆtre, J.-P. Gauthier, J. Miteran, M. Atri, Generalized fourier descriptors with ap-
plications to objects recognition in SVM context, J. Math. Imag. Vis. 30 (1) (2008) 43e
71.https://doi.
org/10.1007/s10851-007-0036-3.
[31] Z.Q. John Lu, The elements of statistical learning: data mining, inference, and prediction, J. Roy.
Stat. Soc. 173 (3) (July, 2010) 693e694.https://doi.org/10.1111/j.1467-985X.2010.00646_6.x.
[32] D. Ruppert, The elements of statistical learning: data mining, inference, and prediction, J. Am. Stat.
Assoc. 99 (466) (2004).https://doi.org/10.1198/jasa.2004.s339, 567e567.
[33] T. Hastie, R. Tibshirani, J. Friedman, The elements of statistical learning: data mining, inference and
prediction probability theory: the logic of science the fundamentals of risk measurement
20 Statistical Modeling in Machine Learning