LESSON 5:
CALCULATING MEAN AND
VARIANCE OF A DISCRETE
RANDOM VARIABLE
THE MEAN
a.Theaverageofallpossibleoutcomes.Itis
otherwisereferredtoasthe“expectedvalue”
ofaprobabilitydistribution.
b.Meansthatifwerepeatanygivenexperiment
infinitetimes,thetheoreticalmeanwouldbethe
“expectedvalue”.
c.Anydiscreteprobabilitydistributionhasa
mean.
THE VARIANCE AND STANDARD
DEVIATION
TheVARIANCE ofarandom
variabledisplaysthevariabilityorthe
dispersionsoftherandomvariables.
Itshowsthedistanceofarandom
variablefromitsmean.
THE VARIANCE AND STANDARD
DEVIATION
a.Ifthevaluesofthevarianceandstandarddeviation
areHIGH,thatmeansthattheindividualoutcomes
oftheexperimentarefarrelativetoeachother.In
otherwords,thevaluesdiffergreatly.
b.Alargevalueofstandarddeviation(orvariance)
meansthatthedistributionisspreadout,with
somepossibilityofobservingvaluesatsome
distancefromthemean.
THE VARIANCE AND STANDARD
DEVIATION
c.IfthevarianceandstandarddeviationareLOW,that
meansthattheindividualoutcomesofthe
experimentarecloselyspacedwitheachother.In
otherwords,thevaluesarealmostthesamevalues
oriftheydodiffer,thedifferenceissmall.
d.Asmallvalueofstandarddeviation(orvariance)
meansthatthedispersionoftherandomvariableis
narrowlyconcentratedaroundthemean.
1.Istheprobabilityofxliesbetween0
and1?
Yes, the probability of X lies between 0
and 1.
X 1 2 3 4 5 6
P(X) �
�
�
�
�
�
�
�
�
�
�
�
SOLUTION:
2.WhatisthesumofallprobabilitiesofX?
????????????=??????�+??????�+??????�+??????�+??????�+??????�
=
�
�
+
�
�
+
�
�
+
�
�
+
�
�
+
�
�
=
�+�+�+�+�+�
�
=
�
�
????????????�
The sum of all probabilities of X is exactly 1.
X 1 2 3 4 5 6
P(X) �
�
�
�
�
�
�
�
�
�
�
�
SOLUTION:
3.Isthereanegativeprobability?Isitpossible
tohaveanegativeprobability?
No negative probabilities because it is
impossible to have it based on the
characteristic of the probability of
discrete random variables.
SOLUTION:
Inaseafoodrestaurant,the
managerwantstoknowiftheir
customersliketheirnewrawlarge
oysters.Accordingtotheirsales
representative,inthepast4months,
thenumberofoystersconsumedby
acustomer,alongwithits
correspondingprobabilities,is
showninthesucceedingtable.
Computethemean,varianceand
standarddeviation.
Number of
oysters
consumed
X
Probabilit
y
P(X)
0 �
��
1 �
��
2 �
��
3 �
��
4 �
��
EXAMPLE 1
1.What is the mean?
??????=[??????∗??????(??????)]
= �+�.�+�.�+�.�+�.�
??????= �.�
SOLUTION:
2.What is the standard deviation?
??????
2
=(??????−??????)²∙??????(??????)
=0.448+0.128+0.012+0.288+0.484
??????
�
�.��
SOLUTION:
1.What is the mean?
??????=[??????∗??????(??????)]
= �+�.��+�.��+�.��+�.��+�.��
??????= �.��
SOLUTION:
2.What is the standard deviation?
??????
2
=(??????−??????)²∙??????(??????)
= �.��+�.��+�.��+�.��+�.��+��
??????
�
=�.��
SOLUTION: