TAMAÑO DE LA MUESTRA

guest8a3c19 435,324 views 18 slides May 18, 2010
Slide 1
Slide 1 of 18
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18

About This Presentation

No description available for this slideshow.


Slide Content

ESTADISTICA INFERENCIAL

Mtra. A Elsa Retureta Álvarez Página 1









TEMA
Canales Hernández Anabel
Escobar Martínez Marisol
Fernández Zapata Ana Karen
González López Ana Karen
Jiménez Flores Jessica
Muñoz Rivera Claribel
Torres Utrera Brenda Lilián
Reyes Ovalles Anahí

ESTADISTICA INFERENCIAL

Mtra. A Elsa Retureta Álvarez Página 2



TEMA: TAMAÑO DE LA MUESTRA

APLICACION

El determinar el tamaño de una muestra representa una parte esencial del método
científico para poder llevar a cabo una investigación. Al muestreo lo podemos
definir como el conjunto de observaciones necesarias para estudiar la distribución
de determinadas características en la totalidad de una población, a partir de la
observación de una parte o subconjunto de una población, denominada muestra.

El cálculo del tamaño de la muestra es uno de los aspectos a concretar en las
fases previas de la investigación comercial y determina el grado de credibilidad
que concederemos a los resultados obtenidos.

Al definir el tamaño de la muestra, nosotros deberemos procurar que ésta
información sea representativa, válida y confiable y al mismo tiempo nos
represente un mínimo costo. Por lo tanto, el tamaño de la muestra estará
delimitado por los objetivos del estudio y las características de la población,
además de los recursos y el tiempo de que se dispone.

ESTADISTICA INFERENCIAL

Mtra. A Elsa Retureta Álvarez Página 3


GLOSARIO DE TAMAÑO DE LA MUESTRA

CONCEPTO DEFINICION TRADUCCION

HIPOTESIS
Es una afirmación con
respecto a una
distribución de
probabilidad.

ESTADISTICA INFERENCIAL

Mtra. A Elsa Retureta Álvarez Página 4




FORMULARIO


MUESTRA

Se llama muestra a una
parte de la población a
estudiar qué sirve para
representarla.


POBLACION

Una población se precisa
como un conjunto finito o
infinito de personas u
objetos que presentan
características comunes.


PORCENTAJE DE
CONFIANZA
(CONFIANZA)
Es el porcentaje de
seguridad que existe
para generalizar los
resultados obtenidos.



PORCENTAJE DE
ERROR
Equivale a elegir una
probabilidad de aceptar
una hipótesis que sea
falsa como si fuera
verdadera, o la inversa:
rechazar a hipótesis
verdadera por
considerarla falsa.




VARIABILIDAD


Es la probabilidad (o
porcentaje) con el que se
aceptó y se rechazó la
hipótesis que se quiere
investigar en alguna
investigación anterior o
en un ensayo previo a la
investigación actual.

ESTADISTICA INFERENCIAL

Mtra. A Elsa Retureta Álvarez Página 5


TAMAÑO DE LA MUESTRA

CASO

ESTADISTICO








ESTIMAR LA MEDIA




donde:
n = es el tamaño de la muestra;
Z = es el nivel de confianza;
E = es la precisión o error.
= es la varianza.



donde:
n = es el tamaño de la muestra;
Z = es el nivel de confianza;
N = es el tamaño de la población;
= es la varianza.
E = es la precisión o el error.




ESTIMAR LA PROPORCION



donde:

ESTADISTICA INFERENCIAL

Mtra. A Elsa Retureta Álvarez Página 6










INTRODUCCION

TEORIA


n = es el tamaño de la muestra;
Z = es el nivel de confianza;
p = es la variabilidad positiva;
q = es la variabilidad negativa;
E = es la precisión o el error.



donde:
n = es el tamaño de la muestra;
Z = es el nivel de confianza;
N = es el tamaño de la población
p = es la variabilidad positiva;
q = es la variabilidad negativa;
E = es la precisión o error

ESTADISTICA INFERENCIAL

Mtra. A Elsa Retureta Álvarez Página 7

En Estadística el tamaño de la muestra es el número de sujetos que componen la
muestra extraída de una población, necesarios para que los datos obtenidos sean
representativos de la población.
Para calcular el tamaño de una muestra hay que tomar en cuenta tres factores:
1. El porcentaje de confianza con el cual se quiere generalizar los datos desde
la muestra hacia la población total.
2. El porcentaje de error que se pretende aceptar al momento de hacer la
generalización.
3. El nivel de variabilidad que se calcula para comprobar la hipótesis.
La confianza o el porcentaje de confianza es el porcentaje de seguridad que existe
para generalizar los resultados obtenidos. Esto quiere decir que un porcentaje del
100% equivale a decir que no existe ninguna duda para generalizar tales
resultados, pero también implica estudiar a la totalidad de los casos de la
población.
El error o porcentaje de error equivale a elegir una probabilidad de aceptar una
hipótesis que sea falsa como si fuera verdadera, o la inversa: rechazar a hipótesis
verdadera por considerarla falsa. Al igual que en el caso de la confianza, si se
quiere eliminar el riesgo del error y considerarlo como 0%, entonces la muestra es
del mismo tamaño que la población, por lo que conviene correr un cierto riesgo de
equivocarse.
La variabilidad es la probabilidad (o porcentaje) con el que se aceptó y se rechazó
la hipótesis que se quiere investigar en alguna investigación anterior o en un
ensayo previo a la investigación actual. El porcentaje con que se aceptó tal
hipótesis se denomina variabilidad positiva y se denota por p, y el porcentaje con
el que se rechazó se la hipótesis es la variabilidad negativa, denotada por q.
Hay que considerar que p y q son complementarios, es decir, que su suma es
igual a la unidad: p+q=1. Además, cuando se habla de la máxima variabilidad, en
el caso de no existir antecedentes sobre la investigación (no hay otras o no se
pudo aplicar una prueba previa), entonces los valores de variabilidad es p=q=0.5.
Una vez que se han determinado estos tres factores, entonces se puede calcular
el tamaño de la muestra como a continuación se expone.

SUPUESTOS Y RESTRICCIONES

ESTADISTICA INFERENCIAL

Mtra. A Elsa Retureta Álvarez Página 8

SUPUESTOS
El tamaño de la muestra depende de tres aspectos:
1) Error permitido
2) Nivel de confianza estimado
3) Carácter finito o infinito de la población.
Las fórmulas generales para determinar el tamaño de la muestra son las
siguientes:
Para poblaciones infinitas (más de 100,000 habitantes)
Para poblaciones finitas (menos de 100,000 habitantes)
Nomenclatura:
n = Número de elementos de la muestra
N = Número de elementos de la población o universo
P/Q = Probabilidades con las que se presenta el fenómeno.
Z2 = Valor crítico correspondiente al nivel de confianza elegido; siempre se opera
con valor zeta 2, luego Z = 2.
E = Margen de error permitido (determinado por el responsable del estudio).
Cuando el valor de P y de Q sean desconocidos o cuando la encuesta abarque
diferentes aspectos en los que estos valores pueden ser desiguales, es
conveniente tomar el caso más adecuado, es decir, aquel que necesite el máximo
tamaño de la muestra, lo cual ocurre para P = Q = 50, luego, P = 50 y Q = 50.


RESTRICCIONES
A la hora de determinar el tamaño que debe alcanzar una muestra hay que tomar
en cuenta varios factores: el tipo de muestreo, el parámetro a estimar, el error
muestral admisible, la varianza poblacional y el nivel de confianza. Por ello antes
de presentar algunos casos sencillos de cálculo del tamaño muestral delimitemos
estos factores.

ESTADISTICA INFERENCIAL

Mtra. A Elsa Retureta Álvarez Página 9


Parámetro. Son las medidas o datos que se obtienen sobre la población.
Estadístico. Los datos o medidas que se obtienen sobre una muestra y por lo tanto
una estimación de los parámetros.

Error Muestral, de estimación o Standard. Es la diferencia entre un estadístico y su
parámetro correspondiente. Es una medida de la variabilidad de las estimaciones
de muestras repetidas en torno al valor de la población, nos da una noción clara
de hasta dónde y con qué probabilidad una estimación basada en una muestra se
aleja del valor que se hubiera obtenido por medio de un censo completo. Siempre
se comete un error, pero la naturaleza de la investigación nos indicará hasta qué
medida podemos cometerlo (los resultados se someten a error muestral e
intervalos de confianza que varían muestra a muestra). Varía según se calcule al
principio o al final. Un estadístico será más preciso en cuanto y tanto su error es
más pequeño. Podríamos decir que es la desviación de la distribución muestral

de
un estadístico y su fiabilidad.

Nivel de Confianza. Probabilidad de que la estimación efectuada se ajuste a la
realidad. Cualquier información que queremos recoger está distribuida según una
ley de probabilidad (Gauss o Student), así llamamos nivel de confianza a la
probabilidad de que el intervalo construido en torno a un estadístico capte el
verdadero valor del parámetro.

Varianza Poblacional. Cuando una población es más homogénea la varianza es
menor y el número de entrevistas necesarias para construir un modelo reducido
del universo, o de la población, será más pequeño. Generalmente es un valor
desconocido y hay que estimarlo a partir de datos de estudios previos.


FORMULAS

Vamos a presentar dos fórmulas, siendo la primera la que se aplica en el caso de
que no se conozca con precisión el tamaño de la población, y es:

ESTADISTICA INFERENCIAL

Mtra. A Elsa Retureta Álvarez Página 10


Donde:
n es el tamaño de la muestra;
Z es el nivel de confianza;
p es la variabilidad positiva;
q es la variabilidad negativa;
E es la precisión o error.
Hay que tomar nota de que debido a que la variabilidad y el error se pueden
expresar por medio de porcentajes, hay que convertir todos esos valores a
proporciones en el caso necesario.
También hay que tomar en cuenta que el nivel de confianza no es ni un
porcentaje, ni la proporción que le correspondería, a pesar de que se expresa en
términos de porcentajes. El nivel de confianza se obtiene a partir de la distribución
normal estándar, pues la proporción correspondiente al porcentaje de confianza es
el área simétrica bajo la curva normal que se toma como la confianza, y la
intención es buscar el valor Z de la variable aleatoria que corresponda a tal área.
En el caso de que sí se conozca el tamaño de la población entonces se aplica la
siguiente fórmula:




Donde:
n es el tamaño de la muestra;
Z es el nivel de confianza;
p es la variabilidad positiva;
q es la variabilidad negativa;
N es el tamaño de la población;
E es la precisión o el error.
La ventaja sobre la primera fórmula es que al conocer exactamente el tamaño de
la población, el tamaño de la muestra resulta con mayor precisión y se pueden
incluso ahorrarse recursos y tiempo para la aplicación y desarrollo de una
investigación.


TABLAS
Para obtener el cálculo adecuado del tamaño de la muestra, la formula exige
un determinado nivel de confianza, el cual se puede consultar por medio de
una tabla con valores estándar.
Los valores Za según la seguridad y Zb según el poder se indican en la Tabla
siguiente.

ESTADISTICA INFERENCIAL

Mtra. A Elsa Retureta Álvarez Página 11

Tabla 2. Valores de Za y Zb más frecuentemente
utilizados
Za
a
Test unilateral Test bilateral
0.200
0.150
0.100
0.050
0.025
0.010
0.842
1.036
1.282
1.645
1.960
2.326
1.282
1.440
1.645
1.960
2.240
2.576
Potencia
b (1-b) Zb
0.01
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.99
0.95
0.90
0.85
0.80
0.75
0.70
0.65
0.60
0.55
0.50
2.326
1.645
1.282
1.036
0.842
0.674
0.524
0.385
0.253
0.126
0.000



UTILIDAD
El tamaño de la muestra nos permite obtener una cantidad significativa de la
población que abarca nuestro campo de investigación, por lo tanto es de gran
utilidad; ya que reduce el tiempo y los costos de una investigación, agiliza el
proceso de esta y se obtienen resultados significativos para la investigación. Es
por eso que para su mejor aprovechamiento y adecuados resultados es
necesario el correcto cálculo del tamaño de la muestra. Un calculo equivocado

ESTADISTICA INFERENCIAL

Mtra. A Elsa Retureta Álvarez Página 12

podría generar lo contrario de todos los beneficios antes mencionados que este
aporta.


EJEMPLOS
Ejemplo 1.
Se desea estimar el peso promedio de los sacos que son llenados por un nuevo
instrumento en una industria. Se conoce que el peso de un saco que se llena con
este instrumento es una variable aleatoria con distribución normal. Si se supone
que la desviación típica del peso es de 0,5 kg. Determine el tamaño de muestra
aleatoria necesaria para determinar una probabilidad igual a 0,95 de que el
estimado y el parámetro se diferencien modularmente en menos de 0,1 kg.
Solución:

Evidentemente un tamaño de muestra no puede ser fraccionario por lo que se
debe aproximar por exceso. El tamaño de muestra sería de 97.
Si la varianza de la población es desconocida, que es lo que mas frecuente se ve
en la práctica el tratamiento será diferente, no es posible encontrar una fórmula
cuando la varianza poblacional es desconocida por lo que para ello aconsejamos
utilizar el siguiente procedimiento-
Primeramente, se toma una pequeña muestra, que se le llama muestra piloto, con
ella se estima la varianza poblacional ( ) y con este valor se evalúa en la
formula (1), sustituyendo () por su estimación (). El valor deobtenido será
aproximadamente el valor necesario, nuevamente con ese valor de se extrae
una muestra de este tamaño de la población se le determina la varianza a esa
muestra, como una segunda estimación de () y se aplica de nuevo la formula
(1), tomando la muestra con el obtenido como muestra piloto para la siguiente

ESTADISTICA INFERENCIAL

Mtra. A Elsa Retureta Álvarez Página 13

iteración, se llegará a cumplir con las restricciones prefijadas. Se puede plantear
esta afirmación ya que la de tiende a estabilizarse a medida que aumenta
alrededor de la por lo que llegará el momento en que se encuentre el
tamaño de muestra conveniente, sin embargo, en la práctica es mucho más
sencillo pues, a lo sumo con tres iteraciones se obtiene el tamaño de muestra
deseado, este procedimiento para obtener el tamaño de muestra deseado se
puede realizar utilizando en Microsoft Excel en la opción análisis de datos las
opciones estadística descriptiva para ir hallando la varianza de cada una de las
muestras y la opción muestra para ir determinado las muestras pilotos. Para
obtener el tamaño de la muestra utilizando este método recomendamos la
utilización de un paquete de computo como por ejemplo el Microsoft Excel,
aplicando las opciones muestra y estadística descriptiva.
Para determinar el tamaño de la muestra cuando los datos son cualitativos es
decir para el análisis de fenómenos sociales o cuando se utilizan escalas
nominales para verificar la ausencia o presencia del fenómeno a estudiar, se
recomienda la utilización de la siguiente formula:

(2)
siendo sabiendo que:
es la varianza de la población respecto a determinadas variables.
es la varianza de la muestra, la cual podrá determinarse en términos de
probabilidad como
es error estandar que está dado por la diferencia entre () la media
poblacional y la media muestral.
es el error estandar al cuadrado, que nos servirá para determinar , por
lo que = es la varianza poblacional.

ESTADISTICA INFERENCIAL

Mtra. A Elsa Retureta Álvarez Página 14

Ejemplo 2.
De una población de 1 176 adolescentes de una ciudad X se desea conocer la
aceptación por los programas humorísticos televisivos y para ello se desea tomar
una muestra por lo que se necesita saber la cantidad de adolescentes que deben
entrevistar para tener una información adecuada con error estandar menor de
0.015 al 90 % de confiabilidad.
Solución:
= 1 176
= 0,015


por lo que

Es decir para realizar la investigación se necesita una muestra de al menos 298
adolescentes.




Ejemplo 3.
En el proyecto de Al Haouz en Marruecos, se ha calculado que cerca del 30%
(0,3) de los niños de la zona del proyecto padecen de malnutrición crónica. Este
dato se basa en estadísticas nacionales sobre malnutrición en las zonas rurales.
Utilizando los valores estándar indicados supra se efectúa el cálculo siguiente:
Cálculo:
Càlculo:
n= 1.96² x .3(1-.3)

ESTADISTICA INFERENCIAL

Mtra. A Elsa Retureta Álvarez Página 15

.05²
n = 3.8416 x .21
.0025
n = .8068
.0025
n = 322.72 ~ 323

Ejemplo 4.
Un fabricante de reproductores de discos compactos utiliza un conjunto de
pruebas amplias para evaluar la función eléctrica de su producto. Todos los
reproductores de discos compactos deben pasar todas las pruebas antes de
venderse. Una muestra aleatoria de 500 reproductores tiene como resultado 15
que fallan en una o más pruebas. Encuentre un intervalo de confianza de 90%
para la proporción de los reproductores de discos compactos de la población que
no pasan todas las pruebas.
Solución:
n=500
p = 15/500 = 0.03
z(0.90) = 1.645

0.0237<P<0.0376
Se sabe con un nivel de confianza del 90% que la proporción de discos
defectuosos que no pasan la prueba en esa población esta entre 0.0237 y
0.0376.

Ejemplo 5.
En una muestra de 400 pilas tipo B fabricadas por la Everlast Company, se
encontraron 20 defectuosas. Si la proporción p de pilas defectuosas en esa
muestra se usa para estimar P, que vendrá a ser la proporción verdadera de todas
las pilas defectuosas tipo B fabricadas por la Everlast Company, encuentre el
máximo error de estimación tal que se pueda tener un 95% de confianza en que
P dista menos de de p.

ESTADISTICA INFERENCIAL

Mtra. A Elsa Retureta Álvarez Página 16


Solución:
p=x/n = 20/400=0.05
z(0.95)=1.96

Si p=0.05 se usa para estimar P, podemos tener un 95% de confianza en
que P dista menos de 0.021 de p. En otras palabras, si p=0.05 se usa para
erstimar P, el error máximo de estimación será aproximadamente 0.021 con
un nivel de confianza del 95%.
Para calcular el intervalo de confianza se tendría:

Esto da por resultado dos valores, (0.029, 0.071). Con un nivel de confianza
del 95% se sabe que la proporción de pulas defectuosas de esta compañía
está entre 0.029 y 0.071.
Si se requiere un menor error con un mismo nivel de confianza sólo se
necesita aumentar el tamaño de la muestra.


EJERCICIOS RESUELTOS
PROBLEMAS:
1.- ¿Cuál sería el tamaño de muestra necesario, para estimar a nivel de confianza
del 90% la media poblacional con un error menor o igual de 1 si la desviación
típica de la población es 3?

a) para un n.c. del 90% z tabulado para 0.45 = 1.645
2.- Determinar el tamaño de muestra necesario para estimar una proporción
poblacional a nivel de confianza de 0.95, con un error absoluto menor que 0.05,
siendo que en una muestra piloto se obtuvo una p = 0.2

ESTADISTICA INFERENCIAL

Mtra. A Elsa Retureta Álvarez Página 17


a) para un n.c. del 95% z tabulado para 0.475 = 1.96

3.- En un estudio de 300 accidentes de automóvil en una ciudad específica, 60
tuvieron consecuencias fatales. Con base en esta muestra, construya un intervalo
del 90% de confianza para aproximar la proporción de todos los accidentes
automovilísticos que en esa ciudad tienen consecuencias fatales.
4.-Un biólogo quiere estimar el peso promedio de los ciervos cazados en el estado
de Maryland. Un estudio anterior de diez ciervos cazados mostró que la desviación
estándar de sus pesos es de 12.2 libras. ¿Qué tan grande debe ser una muestra
para que el biólogo tenga el 95% de confianza de que el error de estimación es a
lo más de 4 libras?
5.-Una empresa eléctrica fabrica focos que tienen una duración aproximadamente
normal con una desviación estándar de 40 horas. ¿De qué tamaño se necesita
una muestra si se desea tener 96% de confianza que la media real esté dentro de
10 horas de la media real?





RESULTADO:
1.-


( 1.645 x 3 )
2
= 24.35
1
b) El tamaño de muestra requerido sería mayor o igual a 25
2.-




1.96
2
x 0.2 x 0.8 = 245.86
0.05
2

ESTADISTICA INFERENCIAL

Mtra. A Elsa Retureta Álvarez Página 18

b) El tamaño de muestra necesario para estimar la proporción poblacional será
mayor o igual a 246

3.-
P= 60/300 = 0.20
Z(0.90) = 1.645
0.162<P<0.238
4.-
1.
En consecuencia, si el tamaño de la muestra es 36, se puede tener un 95%
de confianza en que difiere en menos de 4 libras de .
5.-
1.
Se necesita una muestra de 68 focos para estimar la media de la población
y tener un error máximo de 10 horas.


BIBLIOGRAFÍA
http://es.wikipedia.org/wiki/Tama%C3%B1o_de_la_muestra
http://www.uaq.mx/matematicas/estadisticas/xu5.html
http://www.monografias.com/trabajos12/muestam/muestam.shtml
http://www.fisterra.com/mbe/investiga/9muestras/9muestras.asp
http://www.ifad.org/gender/tools/hfs/anthropometry/s/ant_3.htm
http://www.itch.edu.mx/academic/industrial/estadistica1/cap01d.html
Tags