Teoría de Campos Electromagnéticos
Tema 2: Campos Electrostáticos
- Ley de Coulomb e intensidad de campo eléctrico
- Densidad de flujo eléctrico
- Ley de Gauss
- Potencial eléctrico
- Densidad de energía en campos electrostáticos
Size: 1.67 MB
Language: es
Added: Feb 10, 2019
Slides: 80 pages
Slide Content
Campos Electrostáticos
Sesión I
Teoría de Campos Electromagnéticos
Francisco Sandoval
Agenda
Flashback
Introducción
Ley de Coulomb e intensidad de campo
Campos eléctricos debidos a distribuciones continuas de
carga
Densidad de flujo eléctrico
Ley de Gauss –ecuación de Maxwell
Potencial eléctrico
Densidad de energía en campos electrostáticos
Quadrinho
Revisión –Semana 1I
Flashback
Análisis vectorial
Algebra vectorial.
Sistemas de Coordenadas y su transformación.
Cálculo aplicado a vectores.
Introducción
Introducción: Aplicación de la electrostática
Transmisión de energía
eléctrica
Aparatos de rayos X y
pararrayos
Dispositivos –electrónica de
estado sólido
Periféricos de computadoras Pantalla sensible al tacto
Medicina:
electrocardiograma,
electroencefalogramas, etc.
Introducción: Aplicación de la electrostática
(Industriales)
Pintura por aspersión
Maquinaria
electroquímica
Separación de partículas
finas
Rociar plantas
Medir el contenido de
humedad de los cultivos
Acelerar el horneado
del pan, etc.
Ley de Coulomb e intensidad de
campo
Ley de Coulomb I
La ley de Coulomb establece que la fuerza �entre dos cargas
puntuales �
1y �
2es:
1.De dirección igual a la de la línea que las une.
2.Directamente proporcional al producto �
1�
2de las
cargas.
3.Inversamente proporcional al cuadrado de la distancia �
entre ellas.
�=
��
1�
2
�
2
•�, constante de proporcionalidad
•�
1��
2en coulombs(C)
•Distancia �en metros (m)
•Fuerza �en newtons(N)
Ley de Coulomb II
�=Τ1(4�??????
0)
La constante ??????
0se conoce como permitividaddel vacío (en
faradspor metro)
??????
0=8.854×10
−12
≃
10
−9
36�
ΤFm
�=
1
4�??????
0
≃9×10
9
ΤFm
�=
�
1�
2
4�??????
0�
2
Ley de Coulomb III
Si �
1y �
2se localizan en puntos con vectores de
posición ??????
1y ??????
2, entonces la fuerza �
12sobre �
2debida
a �
1, esta dada por:
�=
�
1�
2
4�??????
0�
2
??????
�12
donde:
�
12=??????
2−??????
1
�=�
12
??????
�12
=
�12
�
Ley de Coulomb -Observaciones
1.�
21=−�
12
2.Cargas iguales se repelen, cargas distintas se atraen.
3.La distancia �entre los cuerpos cargados �
1y �
2debe
ser grande en comparación con las dimensiones lineales
de los cuerpos.
4.�
1y �
2deben ser estáticas.
5.Los signos de �
1y �
2deben tenerse en cuenta.
Si se tiene más de dos cargas puntuales, usar el principio de superposición.
�=
�
4�??????
0
�=1
??????
�
�??????−??????
�
??????−??????
�
3
Ejemplo 1: Fuerza de Coulomb
Hallar la fuerza ejercida sobre la carga �
1, 20??????C, debida a la
carga �
2, -300 ??????C, sabiendo que �
1se sitúa en (0, 1, 2) m y �
2
en (2, 0, 0) m.
�
21=−2??????
�+??????
�+2??????
�
??????
21=
1
3
−2??????
�+??????
�+2??????
�
Entonces
�
1=
20×10
−6
−300×10
−6
4�
10
−9
36�
3
2
−2??????
�+??????
�+2??????
�
3
=6
2??????�−??????�−2??????�
3
N
La magnitud de la fuerza es 6N y la dirección es tal que �
1es
atraída hacia �
2.
Ejemplo 2: Fuerza de Coulomb –Múltiples Cargas
Respecto de la Figura, halle la fuerza sobre una carga de 100 ??????C
en (0, 0, 3) m, si cuatro cargas iguales de 20 ??????C están localizadas
en los ejes �y �en ±4m.
Considere la carga debida a la carga en �=4
10
−4
20×10
−6
4�
10
−9
36�
5
2
−4??????
�+3??????
�
5
La componente �se anula por la carga en �=−4. En
forma similar, las componentes x, debidas a las otras dos
cargas se anulan. Por consiguiente,
�=4
18
25
3
5
??????
�=1.73??????
�N
Intensidad de Campo Eléctrico I
La intensidad de campo eléctrico �es de dirección igual a
la fuerza �y se mide en newtons/coulomb o volts/metro.
La intensidad de campo eléctrico �es la fuerza por unidad de carga en el campo
eléctrico.
�=
�
�
La intensidad de campo eléctrico en el punto ??????debida a una carga puntual localizada
en ??????′es
�=
�
4�??????
0�
2
??????
�=
�
�??????−??????′
??????−??????′
3
Intensidad de Campo Eléctrico II
La intensidad de campo eléctrico en el caso de ??????cargas puntuales �
1, �
2, … �
??????
localizadas en ??????
1, ??????
2, … ??????
??????, viene dado por:
�=
1
4�??????
0
�=1
??????
�
�??????−??????
�
??????−??????
�
3
Ejemplo 3: Campo Eléctrico –Carga Puntual
Halle �en (0, 0, 5) m debido a �
1=0.35??????C en (0, 4, 0) m y
�
2=−0.55??????C en (3, 0, 0).
�
�=−4??????
�+5??????
�
�
�=−3??????
�+5??????
�
�
�=
0.35×10
−6
4�
10−
9
36�
41
−4??????
�+5??????
�
41
=−48.0??????
�+60.0??????
�V/m
�
�=
−0.55×10
−6
4�
10−
9
36�
34
−3??????
�+5??????
�
34
=74.9??????
�124.9??????
�V/m
�=�
�+�
�=74.9??????
�−48.0??????
�−64.9??????
�V/m
Campos eléctricos debidos a
distribuciones continuas de carga
Introducción I
Cálculo de campo eléctrico en distribución continua de
carga a lo largo de una línea, sobre una superficie o en un
volumen.
Introducción II
Notación:
�
??????(ΤCm), densidad de carga lineal
�
�(ΤCm
2
), densidad de carga superficial
�
??????(ΤCm
3
), densidad de carga volumétrica
��, elemento de carga
�, carga total
��=�
??????��→�=
??????
�
??????��(carga de línea)
��=�
���→�=
�
�
���(carga superficial)
��=�
??????��→�=
??????
�
??????��(carga volumétrica)
Carga de línea I
Considérese una carga de
línea con densidad de
carga uniforme �
??????que se
extiende de �a �a lo
largo del eje �.
El elemento de carga de la
línea es:
��=�
??????��=�
??????��
La carga total:
�=න
��
��
�
??????��
Carga de línea II
La intensidad de campo eléctrico �en un punto
arbitrario �(�,�,�)puede hallarse por:
�=
�??????��
4�??????0�
2
??????
�
Sea el punto donde el campo será evaluado (�,�,�), y el
punto de origen (�
′
,�′,�′), basado en la figura:
��=��′
�=�,�,�−0,0,�′=�??????
�+�??????
�+�−�′??????
�
�=�??????
�+�−�′??????
�
�
2
=�
�
=�
2
+�−�′
2
??????
�
�
2
=
�
�
3
=
�??????
??????+�−�′??????
??????
�
2
+�−�′
2Τ32
Carga de línea IV
Respecto a una carga de línea finita:
�=
�
??????
4�??????
0�
−sin??????
2−sin??????
1??????
�+cos??????
2−cos??????
1??????
�
En el caso de una carga de línea infinita, el punto �está en 0,0,∞y
�en 0,0,−∞:
�=
�??????
2�??????0�
??????
�
Si la línea no sigue la dirección del eje �, �es la distancia
perpendicular de la línea al punto de interés y ??????
�un vector unitario
a lo largo de esa distancia dirigido de la carga de línea al punto del
campo.
Ejemplo 4: Campo Eléctrico –Línea de Carga
Como se muestra en la Figura, dos cargas lineales uniformes de
densidad �
�=4nC/mcaen en el plano �=0en �=
±4m. Hallar �en 4,0,10m.
Las líneas de carga son ambas paralelas a ??????
�; sus
campos son radiales y paralelos al plano ��. Para
cualquier carga lineal la magnitud del campo en �es
�=
�
�
2�??????
0�
=
18
2
V/m
El campo debido a ambas cargas lineales es, por
superposición.
�=2
18
2
cos45°??????
�=18??????
�V/m
Carga superficial I
Considérese una lámina
infinita de carga en el
plano ��con densidad de
carga uniforme �
�.
La carga asociada con un
área elemental ��es
��=�
���
La carga total:
�=න�
���
Carga superficial II
La contribución al campo �en el punto �(0,0,ℎ)por la
superficie elemental 1 es:
��=
��
4�??????
0�
2
??????
�
Luego:
Sustituyendo:
Carga superficial III
Considerando la simetría de la distribución de carga:
El campo de una lámina infinita de carga:
�=
�
�
2??????
0
??????
??????
Carga superficial IV
??????
??????es un vector unitario normal a la lámina.
El campo eléctrico es normal a la lámina e independiente
de la distancia entre la lámina y el punto de observación P.
En un capacitor de placas paralelas el campo eléctrico
existente entre las dos placas con carga igual y opuesta
está dado por:
�=
�
�
??????
0
??????
??????
Ejemplo 5: Campo Eléctrico –Superficie de Carga
Halle, en coordenadas cilíndricas, la intensidad de campo
eléctrico �en (0,??????,�)debido al disco uniformemente
cargado �≤??????,�=0.
Si la densidad de carga constante es �
�,
��=
�
�����??????
4�??????
0�
2
+ℎ
2
−�??????
??????+ℎ??????
�
�
2
+ℎ
2
La componente radial se cancela. Por
consiguiente,
�=
�
�ℎ
4�??????
0
න
0
2�
න
0
??????
����??????
�
2
+ℎ
2
3
2
??????
�
=
�
�ℎ
2??????
0
−
1
??????
2
+ℎ
2
+
1
ℎ
??????
�
Nótese que cuando ??????→∞. �→
�??????
2??????0
??????
�, el
campo debido a una carga laminar uniforme.
Carga volumétrica I
Sea la distribución de carga
volumétrica con densidad de
carga uniforme �
??????.
La carga ��asociada con el
volumen elemental ��es
��=�
??????��
La carga total es una esfera
de radio ??????
�=න�
??????��=�
??????න��
�=�
??????
4�??????
3
3
Carga volumétrica II
El campo eléctrico ��en �(0,0,�)debido a la carga
volumétrica elemental es
��=
�
??????��
4�??????
0�
2
??????
�
El campo eléctrico es:
�=
�
4�??????
0�
2
??????
�
Es idéntico al campo eléctrico en el mismo punto debido a una carga
puntual �ubicada en el origen o en el centro de la distribución
esférica de carga.
Sesión II
Lección II
1.Describa la ley de Coulomb.
2.Defina la intensidad de Campo eléctrico.
3.Dada la figura, en el plano �=3m se distribuye
uniformenteuna carga de densidad �
�=10
−8
/6�
C/m
2
. Determine �en todos los puntos.
Densidad de Flujo Eléctrico
Densidad de Flujo eléctrico
Flujo eléctrico:
??????=න�∙��
Donde:
�=??????
0�
�es la densidad de flujo eléctrico y se mide en coulombspor
metro cuadrado.
Ley de Gauss –Ecuación de
Maxwell
Ley de Gauss –Ecuación de Maxwell I
La ley de Gauss establece que el flujo eléctrico total ??????a través de cualquier superficie
cerrada es igual a la carga total encerrada por esa superficie.
Ley de Gauss –Ecuación de Maxwell II
Aplicando el teorema de la divergencia:
Resultando en
Teorema de la divergencia: Intuitivamente se puede concebir como la suma de todas las
fuentes menos la suma de todos los sumideros da el flujo de salida neto de una región.
Ley de Gauss –Ecuación de Maxwell III
Las ecuaciones enuncian la ley de Gauss en su forma
integral y en su forma diferencial o puntual.
La ley de Gauss es una formulación alterna de la ley de
Coulomb.
La ley de Gauss aporta un medio simple para hallar �o �
en el caso de distribuciones simétricas de carga puntual,
carga de línea infinita, carga superficial cilíndrica infinita y
distribución esférica de carga.
Aplicaciones de la ley de Gauss
Aplicaciones de la ley de Gauss
Procedimiento:
Saber antes si existe simetría.
Una vez detectada una distribución simétrica de carga, se
elabora una superficie cerrada matemática (superficie
gaussiana).
�debe ser tangencial o normal a la superficie gaussiana.
En el primer caso,�∙��=���,puestoqueD es constante sobre la
superficie.
En el segundo caso, �∙��=0.
Carga puntual
Superficie gaussiana es
esférica centrada en el
origen.
D es tangencial en todas
partes a la superficie
gaussiana.
Carga lineal infinita
Elegir una superficie
cilíndrica que contenga a P
para satisfacer simetría.
Lámina infinita de carga
Elegir una caja rectangular
simétricamente cortada
por la lámina de carga y
con dos de sus caras
paralelas a la lámina.
Esfera con Carga Uniforme IV
�≥??????
Esfera con Carga Uniforme V
Ejemplo 6: Ley de Gauss
Un volumen que, en coordenadas cilíndricas, está entre �=2m
y �=4m contiene una densidad uniforme de carga �(C/m
3
).
Utilice la ley de Gauss para hallar �en todas las regiones.
Potencial Eléctrico
Potencial eléctrico I
También es posible obtener el campo eléctrico �a partir
del potencial escalar eléctrico �.
Método más sencillo porque maneja escalares en vez de
vectores.
Suponer que se desea mover una carga puntual �del
punto �al punto �en el campo eléctrico �.
Potencial eléctrico II
La fuerza sobre �es �=��(ley Coulomb), de modo
que el trabajo realizado en el desplazamiento de la carga
por �??????es:
El signo negativo indica que el trabajo es realizado por un
agente externo.
El trabajo realizado total, o la energía potencial requerida,
para mover �de �a �es
Potencial eléctrico III
La división de �entre �da como resultado la energía
potencial por unidad de carga (�
��-diferencia de
potencial entre �y �)
Potencial eléctrico IV
Al determinar �
��, �es el punto inicial y �es el final.
Si �
��es negativo, hay una pérdida de energía potencial
en el desplazamiento de �de �a �; el trabajo es
realizado por el campo. Si �
��es positivo, hay ganancia de
energía potencial en el desplazamiento; un agente externo
realiza el trabajo.
�
��es independiente de la trayectoria adoptada.
�
��se mide en joulespor coulomb, unidad llamada volt
(V)
Potencial eléctrico V
Si el campo �se debe a una carga puntual:
�
�y �
�son los pontenciales(o pontecialesabsolutos) en
�y �, respectivamente.
La diferencia de potencial �
��puede considerarse como
el potencial en �en referencia a �.
Potencial eléctrico VI
El potencial en cualquier punto debido a una carga
puntual �situada en el origen es
Si la carga puntual �no se localiza en el origen sino en un
punto cuyo vector de posición es ??????′
El potencial en cualquier punto es la diferencia de potencial entre ese punto y un
punto elegido como referencia en el que le potencial sea cero.
Potencial eléctrico VII
1.Se eligió arbitrariamente el infinito como punto (de referencia) de potencial cero.
2.El potencial en un punto puede determinarse de dos maneras, según sea lo que
se conoce, la distribución o �.
Relación entre E y V –Ecuación
de Maxwell
Relación entre E y V –Ecuación de Maxwell
I
La diferencia de potencial
entre los puntos �y �es
independiente de la
trayectoria adoptada.
En términos físicos implica que en un
campo electrostático el
desplazamiento de una carga a lo
largo de una trayectoria cerrada no
supone realización de ningún trabajo
neto.
Relación entre E y V –Ecuación de Maxwell
II
Aplicando el teorema de Stoke:
Todo campo que satisface la ecuación, se dice conservativo o
irrotacional.
Un campo electrostático es un campo conservativo.
Es la ecuación de Maxwell para campos eléctricos estáticos
(segunda ecuación de Maxwell por deducir) en su forma
integral e diferencial.
Describe la naturaleza conservativa de un campo
electrostático.
Relación entre E y V –Ecuación de Maxwell
III
De la definición de potencial
Comparando las dos expresiones para ��
Dipolo eléctrico y líneas de flujo
Dipolo eléctrico I
Un dipolo eléctrico se forma cuando dos cargas puntuales de igual magnitud pero
signo contrario están separadas por una distancia reducida.
Dipolo eléctrico II
�
1y �
2son las distancias entre �y +�y �y −�,
respectivamente.
Si �≫�, �
1−�
2≃�cos??????, �
2�
1≃�
2
, y
Como �cos??????=??????∙??????
�, donde ??????=�??????
�, definiendo el
momento del dipolo:
Dipolo eléctrico III
Si el centro del dipolo no se encuentra en el origen sino
en ??????‘
El campo eléctrico debido al dipolo con centro en el
origen es:
Dipolo eléctrico IV
donde
Líneas de Flujo eléctrico I
Una línea de flujo eléctrico es una trayectoria �línea imaginaria trazada de tal
manera que su dirección en cualquier punto sea la dirección del campo eléctrico en
ese punto.
Toda superficie con
igual potencial en
cualquier punto se
conoce como
superficie
equipontencial.
Superficie equipotenciales para (a) una carga puntual y (b) un dipolo eléctrico
Densidad de energía en campos
electrostáticos
Densidad de energía en campos
electrostáticos I
Para determinar la energía presente en un conjunto de cargas,
primero debemos determinar la cantidad de trabajo necesario
para reunirlas.
Si las cargas se sitúan en orden inverso
�
23es el potencial en �
2debido a �
3, �
12y �
13los potenciales en �
1
debidos a �
2y �
3respectivamente.
Densidad de energía en campos
electrostáticos II
Si se adiciona las ecuaciones anteriores:
�
1, �
2y �
3son los potenciales totales en �
1, �
2y �
3,
respectivamente. En general, si hay �cargas puntuales,
Densidad de energía en campos
electrostáticos III
Si la región posee una distribución continua de carga, la
sumatoria se convierte en integración.
Puesto que
Densidad de energía en campos
electrostáticos IV
Respecto de todo vector ??????y escalar �es válida la
identidad
Aplicando la identidad a las ecuaciones de �
??????
Densidad de energía en campos
electrostáticos IV
��en el primer término del miembro derecho debe
variar al menos cuando Τ1�
3
, mientras que ��varía
cuando �
2
. En consecuencia, la primera integral de la
ecuación debe tender a cero al crecer la superficie �.
Como
Densidad de energía en campos
electrostáticos V
La densidad de energía electrostática �
??????(en Τ??????�
3
)
puede definirse como
Y �
??????puede expresarse como
Referencias
Bibliografía y Referencias
Sadiku, Matthew N. O. «Elementos de Electromagnetismo»,
Editorial Alfaomega, Oxford UniversityPress, 2010.
Esta obra esta bajo licencia CreativeCommons
de Reconocimiento, No Comercial y Sin Obras
Derivadas, Ecuador 3.0
www.creativecommons.org