18 Introduction
Gray, E. M., & Tall, D. O. (1994). Duality, ambiguity and �exibility: A proceptual view of
simple arithmetic. The Journal for Research in Mathematics Education, 26(2), 115–141.
Keisler, H. J. (1976). Elementary calculus. Prindle, Weber & Schmidt.
Kieran, C. (2007). Learning and teaching of algebra at the middle school through college
levels: Building meaning for symbols and their manipulation. In F. K. Lester (Ed.), Second
handbook of research on mathematics teaching and learning (pp. 707–762). National Council of
Teachers of Mathematics.
K�chemann, D. (1981). Algebra. In K. Hart (Ed.), Children’s understanding of mathematics:
11–16. John Murray.
Rakes, C. R., Valentine, J. C., McGatha, M. B., & Ronau, R. N. (2010). Methods of
instructional improvement in algebra: A Systematic review and meta-analysis. Review of
Educational Research, 80(3), 372–400. https://doi.org/10.3102/0034654310374880
Robinson, A. (1966). Non-standard analysis. North-Holland Publ. Comp.
Schoenfeld, A. H., & Arcavi, A. (1988). On the meaning of variable. Mathematics Teacher, 81,
420–427.
Shulman, L. (1986). Those who understand: Knowledge growth in teaching. Educational
Researcher, 15(2), 4–14.
Skemp, R. R. (1979). Intelligence, learning and action: A foundation for theory and practice in educa
tion. Wiley.
Taback, S. (1975). The child’s concept of limit. In H. Roskopf (Ed.), Children’s mathematical
concepts. Teachers’ College Press.
Tall, D. O. (2013). How humans learn to think mathematically: Exploring the three worlds of math
ematics. Cambridge University Press.
Tall, D. O., Thomas, M. O. J., Davis, G., Gray, E., & Simpson, A. (2000). What is the object
of the encapsulation of a process? Journal of Mathematical Behavior, 18(2), 223–241.
Tao, T. (2007). Ultra�lters, nonstandard analysis, and epsilon management. https://terrytao.wordpress.
com/2007/06/25/ultra�lters-nonstandard-analysis-and-epsilon-management/
Thomas, M. O. J. (2003). The role of representation in teacher understanding of function. In
N. A. Pateman, B. J. Dougherty, & J. Zilliox (Eds.), Proceedings of the 27th conference of the
international group for the psychology of mathematics education (Vol. 4, pp. 291–298). University
of Hawai’i.
Thomas, M. O. J., Hong, Y. Y., & Oates, G. (2017). Innovative uses of digital technology in
undergraduate mathematics. In E. Faggiano, A. Montone, & F. Ferrara (Eds.), Innovation
and technology enhancing mathematics education (pp. 109–136). Springer.
Thompson, P. W., & Harel, G. (2021). Ideas foundational to calculus learning and their
links to students’ di�culties. ZDM – Mathematics Education, 53, 507–519. https://doi.
org/10.1007/s11858-021-01270-1
Vandebrouck, F. (2011). Perspectives et domaines de travail pour l’étude des fonctions. Annales de
Didactiques et de Sciences Cognitives, 16, 149–185.
Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Harvard
University Press.
Wagner, S. (1981). An analytical framework for mathematical variables. Proceedings of the 5th
international conference of psychology in mathematics education (pp. 165–170). Grenoble, France.
Williams, C. G. (1998). Using concept maps to assess conceptual knowledge of function.
Journal for Research in Mathematics Education, 29(4), 414–421.