The Lund Lecture on "Where in the World Is the Market" by Staffan Canback

Tellusant 18 views 52 slides Jul 17, 2024
Slide 1
Slide 1 of 52
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52

About This Presentation

This educational deck contains an overview of the company's methods interlaced with travel stories, and a breakout session for the students in three groups.

The materials were used at a lecture at Lund University for masters students in May 2024.

The data used is from public sources where perm...


Slide Content

C O N F I D E N T I A L | C O P Y R I G H T © T E L L U S A N T , I N C . 2 0 2 4 | D O N O T DI S T R I B U T E
Where in the World Is the Market?
Real World Meets Math—and Math Wins
The Lund Lecture by Staffan Canback
May 2024Streamlining Corporate Decision Making

C O N F I D E N T I A L | C O P Y R I G H T © T E L L U S A N T , I N C . 2 0 2 4 | D O N O T DI S T R I B U T E2C O N F I D E N T I A L | C O P Y R I G H T © T E L L U S A N T , I N C . 2 0 2 4 | D O N O T DI S T R I B U T E
Agenda
1 Introduction
2 Where in the World Is the Market?—The Macro View
3 Where in the World Is the Market?—The Market View
4 Breakout session
5 Q&A

C O N F I D E N T I A L | C O P Y R I G H T © T E L L U S A N T , I N C . 2 0 2 4 | D O N O T DI S T R I B U T E3
Personal details
W H O I S S T A F F A N ?
WORK
Swedish Army Soldier 1977–1978
ABB Systems Development Engineer 1980–1981
McKinsey & Co Partner 1984–1994
Monitor Company Partner 1994–2002
Canback Consulting Managing Director 2003–2020
Tellusant Chairman 2020–
EDUCATION
KTH-Royal Institute of Technology Msc EE 1975–1979
Harvard Business School MBA 1981–1983
Henley Business School DBA 1996–2002
AWARDS
Fulbright Scholar 1981
Wallenberg Scholar 1996
First Prize, EDAMBA European Doctoral Dissertation
Competition 2003
ACADEMIC PUBLICATIONS (found, e.g., at SSRN)
•Toward an Integrated Strategy Development
Framework
•The Growth Tesseract
•Where in the World Is the Market? with F D’Agnese
•Do Diseconomies of Scale Impact Firm Size and
Performance? with P Samouel & D Price
•Does Corporate Size Matter?
•A Lightweight Note on Success in Mergers and
Acquisitions
•Bureaucratic Limits of Firm Size DBA Dissertation
•The Logic of Management Consulting, Parts I & II
•The Industrial Company in the Year 2027
(Predictions Made in 1992)

C O N F I D E N T I A L | C O P Y R I G H T © T E L L U S A N T , I N C . 2 0 2 4 | D O N O T DI S T R I B U T E4
Find patterns where others see chaos
W H A T I S T E L L U S A N T ?
Faster
More accurate
Consistent
Founded in Boston in 2020, we represent the next generation of big ideas
With Tellusant…
Quantitative strategic prediction
platforms with AI make strategy
Corporate strategic planning
is manual and disjointed
This means wasted time
and inefficient solutions
Today…

C O N F I D E N T I A L | C O P Y R I G H T © T E L L U S A N T , I N C . 2 0 2 4 | D O N O T DI S T R I B U T E5
Our team
W H A T I S T E L L U S A N T ?
Over 60 years combined experience in
management consulting and data products
for global corporations, with focus on CPG
Know strategic processes and their flaws
through hundreds of projects on the ground in
80 countries
Experts in combining predictive analytics and
macroeconomics with strategic advice
Leadership team have long-term
working relationship
Philip Burgin-Young
CO-F O U N D E R A N D C H I E F
E X E C U T I V E O F F I C E R
Senior Engagement Manager,
Canback Consulting
BA from Dartmouth College
Dr. Staffan Canback
CO-F O U N D E R A N D
E X E C U T I V E C H A I R M A N
Co-founder and Managing
Director,
Canback Consulting
Partner at McKinsey and Monitor
MBA from Harvard Business
School; DBA from Brunel U.; MSc
from KTH
Bobo Shen
C H I E F P R O D U C T
O F F I C E R
Senior Engagement
Manager,
Canback Consulting
BA from Boston University
MA from Boston University
in Computer Science
Francisco
Maciel
Region Head,
Mexico
Carlos
Alzate
Region Head,
Andean Zone
Kennet
Radne
Advisor
Sharat
Mathur
Advisor

C O N F I D E N T I A L | C O P Y R I G H T © T E L L U S A N T , I N C . 2 0 2 4 | D O N O T DI S T R I B U T E6
Team meeting in Mexico City
W H A T I S T E L L U S A N T ?
Office on Reforma
Boston & Mexico team (Bogota missing)

C O N F I D E N T I A L | C O P Y R I G H T © T E L L U S A N T , I N C . 2 0 2 4 | D O N O T DI S T R I B U T E7
Global Experience
W H A T I S T E L L U S A N T ?
TELLUSANT TEAM MEMBERS’ GLOBAL EXPERIENCE
On the ground-work by city
Work by country
Over 300 strategic solutions
delivered
92 countries
On-the-ground expertise from work in
82 countries, with work in over 120
countries
11 of 20 largest consumer
goods companies
Worked with and are trusted by 11 of
the top 20 consumer goods companies
in the world

C O N F I D E N T I A L | C O P Y R I G H T © T E L L U S A N T , I N C . 2 0 2 4 | D O N O T DI S T R I B U T E9
Focus
I N T R O D U C T I O N
STRATEGY
OPERATIONS
TACTICS
…coordinates and focuses all
company assets to reach a set of
objectives. It assigns resources and
sets boundaries over the long run
…link strategy with tactics and
answer the ‘when’, ‘where’, and ‘what’
questions over time and across units
in the medium term
…deal with the here and now in a
creative manner while building on
repetitive methods and procedures.
They result in short term action
STRATEGY
OPERATIONS
TACTICS
Time
horizon
Scope
Source: WHO; TelluBase; Tellusant analysis

C O N F I D E N T I A L | C O P Y R I G H T © T E L L U S A N T , I N C . 2 0 2 4 | D O N O T DI S T R I B U T E10C O N F I D E N T I A L | C O P Y R I G H T © T E L L U S A N T , I N C . 2 0 2 4 | D O N O T DI S T R I B U T E
Agenda
1 Introduction
2 Where in the World Is the Market?—The Macro View
3 Where in the World Is the Market?—The Market View
4 Breakout session
5 Q&A

C O N F I D E N T I A L | C O P Y R I G H T © T E L L U S A N T , I N C . 2 0 2 4 | D O N O T DI S T R I B U T E11
Photos from Latam
W I T W I T M—M A C R O
Buenos Aires, Argentina
Lima, Peru
Guayaquil, Ecuador

C O N F I D E N T I A L | C O P Y R I G H T © T E L L U S A N T , I N C . 2 0 2 4 | D O N O T DI S T R I B U T E12
Itaipu Dam, Paraguay & Brazil
Iguazu Falls, Argentina

C O N F I D E N T I A L | C O P Y R I G H T © T E L L U S A N T , I N C . 2 0 2 4 | D O N O T DI S T R I B U T E13
Time / income relationship
W I T W I T M—M A C R O
ECONOMIC STAGE OF DEVELOPMENT
Countries compared to U.S. GDP per capita
Brazil
Mexico
Viet Nam
India
Poland
Ethiopia
Malaysia
United Kingdom
South Africa
United States
Alg.
Ango.
Arg.
Aus.
Azer.
Bang.
Belg.
Bra.
Camb.
Came.
Can.
Chile
China
DRC
C.Ivo.
Cuba
Cz.
DR
Eth.
Fr.
Ger.
Ghana
Greece
Guat.
Hond.
Hun.
India
Iran
Italy
Japan
Jord.
Kaz.
Ken.
Kor.
Sp.
UK
Mor.
Myan.
Moz.
Malay.
Nga.
Neth.
Nepal
Pak.
Phil.
PNG
Pol.
Port.
Rom.
Rus.
Saudi
Sudan
Sen.
Swe.
Thai.
Tun.
Tur.
Tai.
Tza.
Uga.
Ukr.
Uzb.
Ven.
Yem.
SA
Zam.
Zim.
Col.
1775
1800
1825
1850
1875
1900
1925
1950
1975
2000
2025
0 10,000 20,000 30,000 40,000 50,000 60,000 70,000
Actual U.S. GDP/capita
Key Markets
Logarithmic Trend
How to interpret: Mexico GDP
per capita is the level of the
U.S. in 1964
Source: WHO; TelluBase; Tellusant analysis

C O N F I D E N T I A L | C O P Y R I G H T © T E L L U S A N T , I N C . 2 0 2 4 | D O N O T DI S T R I B U T E14
2024 macro performance
W I T W I T M—M A C R O-4.0% -3.5% -3.0% -2.5% -2.0% -1.5% -1.0% -0.5%
0.0% 0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0% 4.5% 5.0% 5.5% 6.0% 6.5% 7.0%
GLOBAL ECONOMIC GROWTH DISTRIBUTION
Annual growth in GDP / working-age population 1970-2024
Decile10D9D8D7D6D5D4D3D2D1
2022
2023
2021
2020
2024
2019 0%
1%
2%
1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020
ANNUAL GROWTH OF GLOBAL WORKING -AGE POPULATION
Source: TelluBase; Tellusant analysis

C O N F I D E N T I A L | C O P Y R I G H T © T E L L U S A N T , I N C . 2 0 2 4 | D O N O T DI S T R I B U T E15
Macro outlook
W I T W I T M—M A C R O
0.8%
1.4%
1.6%
2.1%
2.0%
2.2%
3.3%
3.9%
5.0%
6.5%
1.9%
2.1%
2.4%
3.3%
3.7%
4.0%
4.3%
6.3%
1.9%
4.1%
3.2%
Japan
UK
EU
Brazil
Mexico
USA
Turkiye
China
Indonesia
India
Northern America
Europe & C Asia
Latam & Carib.
E Asia
M East & N Africa
Sub-Saharan Africa
SE Asia & Oceania
S Asia
Affluent
Emerging
World
GLOBAL ECONOMIC GROWTH
GDP growth per annum 2024-2029
Source: TelluBase; Tellusant analysis

C O N F I D E N T I A L | C O P Y R I G H T © T E L L U S A N T , I N C . 2 0 2 4 | D O N O T DI S T R I B U T E16
Purchasing Power Parity Examples
W I T W I T M—M A C R O
4,521
6,688
13,324
45,244
Nigeria
China
Brazil
United
States
HOUSEHOLD DISP. INCOME PER CAPITA
PPP$
2,154
4,777
7,409
45,244
Nigeria
China
Brazil
United States
HOUSEHOLD DISP. INCOME PER CAPITA
USD
Source: TelluBase; Tellusant analysis

C O N F I D E N T I A L | C O P Y R I G H T © T E L L U S A N T , I N C . 2 0 2 4 | D O N O T DI S T R I B U T E17
Dimensions of macro growth
W I T W I T M—M A C R O
10.1
10.8
11.2
5.3
5.2
5.1
4.9
4.6
1.9
2.6
62.7
6.9
DISPOSABLE INCOME PER CAPITA
Constant 2015 PPP$, ‘000, 2023
PER CAPITA DISPOSABLE INCOME GROWTH VS POPULATION GROWTH
2023-2030
Panama
Mexico
Costa Rica
Colombia
Peru
Guatemala
El Salvador
Ecuador
Nicaragua
Honduras
USA
Brazil
Asia
Europe
Africa
N America
S America
Oceania
0.0%
0.5%
1.0%
1.5%
2.0%
2.5%
3.0%
-0.5% 0.0% 0.5% 1.0% 1.5% 2.0% 2.5%
Current USD
Population growth (cagr)
Income per capita growth

(cagr)
15.2
15.1
12.9
11.0
8.3
8.1
7.6
7.3
4.2
4.2
49.8
10.6
Panama
Mexico
Costa Rica
Colombia
Peru
Guatemala
El Salvador
Ecuador
Nicaragua
Honduras
United…
Brazil
Source: TelluBase; Tellusant analysis

C O N F I D E N T I A L | C O P Y R I G H T © T E L L U S A N T , I N C . 2 0 2 4 | D O N O T DI S T R I B U T E18
Global Income Level Standard
W I T W I T M—M A C R O
Income level standard Description
Very High
Corresponding to the top 1% of globally-
equivalent spending power population
•Individuals who can save income more regularly
•Consume luxury goods
High
90%-99% of globally-equivalent spending
power population
•Individuals save income
•Consume occasional luxury goods
Middle-High
80%-90% of globally-equivalent spending
power population
•Individuals are able to often save income
•May consume premium goods
Middle
60%-80% of globally-equivalent spending
power population
•Individuals are able to occasionally save income
•May consume premium goods
Middle-Low
40%-60% of globally-equivalent spending
power population
•Able to meet primary needs
•Consistently can afford branded consumer goods
Low
10%-40% of globally-equivalent spending
power population
•Barely have money to meet primary needs
•Occasional (not regular) branded goods consumption
Very Low
0%-10% of globally-equivalent spending
power population
•Barely have money to meet primary needs
•Incredibly rare branded goods consumption
Source: Tellusant concept

C O N F I D E N T I A L | C O P Y R I G H T © T E L L U S A N T , I N C . 2 0 2 4 | D O N O T DI S T R I B U T E19
Latam socioeconomic levels
W I T W I T M—M A C R O
Formal consumer
goods entrants
Regular formal
goods consumers
Premium class
consumers
11% 70% 18%
22% 59% 12%
28% 56% 6%
34% 59% 4%
34% 57% 6%
47% 35% 1%
48% 32% 1%
26% 67% 3%
15% 67% 16%
17% 57% 20%
1% 23% 77%
Mexico
Colombia
Peru
Ecuador
Guatemala
Honduras
Nicaragua
El Salvador
Costa Rica
Panama
United States
Very low Low Middle-Low Middle Middle-High High Very High
INCOME FRACTILES BY COUNTRY
Percentage of total population, 2023
Premium class consumersRegular formal goods consumersEntrants
Source: TelluBase; Tellusant analysis

C O N F I D E N T I A L | C O P Y R I G H T © T E L L U S A N T , I N C . 2 0 2 4 | D O N O T DI S T R I B U T E20
Cities vs countries I
W I T W I T M—M A C R O
INCOME PER CAPITA VARIATION BY COUNTRY
Constant 2015 PPP, 2023
Honduras
Nicaragua
Ecuador
El Salvador
Guatemala
Peru
Colombia
Costa Rica
Mexico
Panama
Managua
San Salvador
Guatemala City
Puebla
San Jose
Panama City
San Pedro Sula
Guayaquil
Cali
Heredia
Mexico City
Arequipa
Cuenca
Medellin
Alajuela
Guadalajara
Quito
Lima
Bogota
Monterrey
0 3,0006,0009,00012,00015,00018,00021,00024,00027,000
Source: TelluBase; Tellusant analysis

C O N F I D E N T I A L | C O P Y R I G H T © T E L L U S A N T , I N C . 2 0 2 4 | D O N O T DI S T R I B U T E21
Cities vs countries II
W I T W I T M—M A C R O
0%1%2%3%4%5%6%7%8%9%10%
Sao Paulo, BRA
Belo Horizonte, BRA
Mexico City, MEX
Monterrey, MEX
Guadalajara, MEX
Buenos Aires, ARG
Santiago, CHL
Rio de Janeiro, BRA
Bogota, COL
Lima, PER
MIDDLE CLASS ANNUAL GROWTH RATE 2003 -2023
10 largest Latin American cities
City middle class cagrCountry GDP / capita cagr
Source: TelluBase; Tellusant analysis

C O N F I D E N T I A L | C O P Y R I G H T © T E L L U S A N T , I N C . 2 0 2 4 | D O N O T DI S T R I B U T E22
DRC Case
W I T W I T M—M A C R O
DEMOCRATIC REPUBLIC OF THE CONGO INCOME LEVELS
Cities and rural part of provinces colored by income/capita
Notes: Colors represent income/capita rank from highest in dark red (Kinshasa) to lowest
in light red (rural Kasai). 16 large cities; 26 provinces. 6 major provinces with black borders
Source: UNHDR, MICS and MPI reports; Tellusant analysis
SHARE OF CONGOLESE ECONOMY
Pop.
GDP
Rest of
country
6 major
provinces
4.7%
6.2%
Rest of country
6 major province
DRC ANNUAL GDP GROWTH
'10-'22
700
1,700
Rest of country
6 major province
DRC GDP PER CAPITA

C O N F I D E N T I A L | C O P Y R I G H T © T E L L U S A N T , I N C . 2 0 2 4 | D O N O T DI S T R I B U T E23
Congolese Market, Luanda, Angola
Congolese truck in Rwanda

C O N F I D E N T I A L | C O P Y R I G H T © T E L L U S A N T , I N C . 2 0 2 4 | D O N O T DI S T R I B U T E24C O N F I D E N T I A L | C O P Y R I G H T © T E L L U S A N T , I N C . 2 0 2 4 | D O N O T DI S T R I B U T E
Agenda
1 Introduction
2 Where in the World Is the Market?—The Macro View
3 Where in the World Is the Market?—The Market View
4 Breakout session
5 Q&A

C O N F I D E N T I A L | C O P Y R I G H T © T E L L U S A N T , I N C . 2 0 2 4 | D O N O T DI S T R I B U T E25
Growth Tesseract
W I T W I T M—M A R K E T
Depth vector
??????�������� �������
??????�������� ��������
THE GROWTH TESSERACT
Value
vector
Reach
vector
Breadth
vector
Depth
vector
Breadth vector
������ ���� ����������
������ ���������
����� �������� ����������
���������
������ �������ℎ������
�������� �ℎ������
??????������� ������������ ��������
���� ��� ������ ������
Reach vector
Value vector
����������
�������� ������
�ℎ���� ����� �����������
Source: Tellusant thought

C O N F I D E N T I A L | C O P Y R I G H T © T E L L U S A N T , I N C . 2 0 2 4 | D O N O T DI S T R I B U T E26
Photos from Africa
W I T W I T M—M A R K E T
Westgate Mall, Harare, Zimbabwe
New town, Luanda. Angola
Satellite dish pentration, Luanda. Angola

C O N F I D E N T I A L | C O P Y R I G H T © T E L L U S A N T , I N C . 2 0 2 4 | D O N O T DI S T R I B U T E27
Keren, Eritrea
Melotti Brewery, Asmara, Eritrea
FIAT Tagliero petrol station, Asmara, Eritrea

C O N F I D E N T I A L | C O P Y R I G H T © T E L L U S A N T , I N C . 2 0 2 4 | D O N O T DI S T R I B U T E28
Traditional trade, Victoria Island, Lagos, Nigeria
Modern trade, Mainland, Lagos, Nigeria
Old Lagos, Nigeria

C O N F I D E N T I A L | C O P Y R I G H T © T E L L U S A N T , I N C . 2 0 2 4 | D O N O T DI S T R I B U T E29
Work minutes
W I T W I T M—M A R K E T
0
1
1
2
2
3
3
4
4
5
0 20 40 60 80 100 120 140
Per capita consumption

(PCC)
Minutes
WORK MINUTES FOR TWO CATEGORIES
Work minutes = Price / Disp. Income per minute
Source: Client data; TelluBase; Tellusant analysis

C O N F I D E N T I A L | C O P Y R I G H T © T E L L U S A N T , I N C . 2 0 2 4 | D O N O T DI S T R I B U T E30
Price ladder
W I T W I T M—M A R K E T
Premium
Mainstream
Value
0
50
100
150
200
Country A B C D E F G H I J
Decreasing market share in country
Source: Client data; TelluBase; Tellusant analysis
Price index
Superpremium
Ideal.
perhaps
VOLUME AT DIFFERENT PRICE POINTS

C O N F I D E N T I A L | C O P Y R I G H T © T E L L U S A N T , I N C . 2 0 2 4 | D O N O T DI S T R I B U T E31
Income elasticity
W I T W I T M—M A R K E T
0
5
10
15
20
25
30
35
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
1960 1970 1980 1990 2000 2010 2020
Global beer / capita consumption
(

)
Income elasticity

(
??????
)

INCOME ELASTICITY FOR GLOBAL BEER DEMAND
??????
??????=

∆??????
??????

∆??????
??????
=
????????????
????????????

??????
??????
??????����� ��??????������??????=
% ��??????��� �� ���??????��
% ��??????��� �� ������
Source: WHO alcoholic beverages database; TelluBase; Tellusant analysis
Source: WHO; TelluBase; Tellusant analysis

C O N F I D E N T I A L | C O P Y R I G H T © T E L L U S A N T , I N C . 2 0 2 4 | D O N O T DI S T R I B U T E32
Differential equations
W I T W I T M—M A R K E T1961
1968
1981
1995
2011
2007
2019
-10
-8
-6
-4
-2
0
2
4
6
8
10
10,000 15,000 20,000 25,000 30,000 35,000 40,000
Deviation from trend
Disposable income / Capita
U.S. LONG-CYCLE ERAS
Difference between actual and predicted
Lowess*
trend
* Lowess = locally estimated scatterplot smoothing 1961
1981
1997
2007
2019
40
45
50
55
60
65
70
75
80
85
10,000 15,000 20,000 25,000 30,000 35,000 40,000
Beer consumption / Capita
Disposable income / Capita
UNITED STATES BEER CONSUMPTION VS INCOME
Actual vs diff. eq. model with damping for high
consumption; 1961-2019
��=??????
�
�
��
UNDAMPED INCOME ELASTICITY
DAMPED INCOME ELASTICITY
If PCC is high, the propensity to
consume declines
��=η
�
�
��−??????�
Solution to diff eq
��=��
−????????????
�
η
Solution to diff eq
�= ��
??????
??????=η−??????x
Income drives demand as
people can afford beer
Income leads to new
consumer preferences
that drive demand down
x = Beer PCC
y = Disposable income / capita
Source: WHO; TelluBase; Tellusant analysis

C O N F I D E N T I A L | C O P Y R I G H T © T E L L U S A N T , I N C . 2 0 2 4 | D O N O T DI S T R I B U T E33
Forecasting I
W I T W I T M—M A R K E T
Golder Tellis Forecasting Model
Disposable
income
Price Market
presence
(distribution)
Consumer
sentiment
���??????�� = � ∙ (��)
??????� ∙ (��)
??????� ∙ (�)
??????� ∙ (��)
??????� ∙ ��
??????
� ∙ �
??????
Marketing
spend
Volume
Industry &
Trade
Consumer
Insights
Economics &
Demography
GOLDER TELLIS PREDICTIVE MODEL
External Internal

C O N F I D E N T I A L | C O P Y R I G H T © T E L L U S A N T , I N C . 2 0 2 4 | D O N O T DI S T R I B U T E34
Forecasting II
W I T W I T M—M A R K E T
-1%
0%
1%
2%
3%
4%
5%
6%
'00-'10 '10-'19 '19-'23 '23-'33
IncomePricingDemographicsOtherShare of thoatMomentum
VOLUME DRIVERS
PCC drivers plus demographics, 2000-2033
0
10,000
20,000
30,000
40,000
0
10
20
30
40
50
2000 2005 2010 2015 2020 2025 2030
PCC Volume (khl)
MARKET EVOLUTION
2000-2033
Source: 3
rd
party data sources, TelluBase; Tellusant analysis

C O N F I D E N T I A L | C O P Y R I G H T © T E L L U S A N T , I N C . 2 0 2 4 | D O N O T DI S T R I B U T E35
Market visits
W I T W I T M—M A R K E T
Market visit
Consumer
Distribution
network
Competition
Political / economic landscape
APPROACH
•4-6 people. Typically, 1 week
•Prior to visit: Conduct preliminary
analyses
•Day 1: Arrive in major city. Have a a
“first look”
•Day 2: Visit modern trade outlets in the
morning and traditional trade outlets
in the evening
•Days 3-4: Split into teams and visit
secondary cities, villages and rural
areas
•Day 5: Re-convene in the major city,
compare findings Day 6: Meet with
client and discuss
The days are long. Start in the trade
around 11, and continue till past midnight
(with an afternoon nap)
WhatsApp is invaluable
Plan for contingencies: Robbery, violence,
engine failure
Source: Tellusant method

C O N F I D E N T I A L | C O P Y R I G H T © T E L L U S A N T , I N C . 2 0 2 4 | D O N O T DI S T R I B U T E36
Photos from Asia
W I T W I T M—M A R K E T
Old American Hangars, Da Nang, Viet Nam
Low chairs, HCMC, Viet Nam
Vung Tau –Resort town, Viet Nam
Street vending, Ha Noi, Vie Nam

C O N F I D E N T I A L | C O P Y R I G H T © T E L L U S A N T , I N C . 2 0 2 4 | D O N O T DI S T R I B U T E37
Railway station Ulaan Baatar, Mongolia
Department store, Ulaan Baatar, Mongolia
Enjoying airag in Ulaan Baatar, Mongolia
Trade visit, Ulaan Baatar, Mongolia

C O N F I D E N T I A L | C O P Y R I G H T © T E L L U S A N T , I N C . 2 0 2 4 | D O N O T DI S T R I B U T E38C O N F I D E N T I A L | C O P Y R I G H T © T E L L U S A N T , I N C . 2 0 2 4 | D O N O T DI S T R I B U T E
Agenda
1 Introduction
2 Where in the World Is the Market?—The Macro View
3 Where in the World Is the Market?—The Market View
4 Breakout session
5 Q&A

C O N F I D E N T I A L | C O P Y R I G H T © T E L L U S A N T , I N C . 2 0 2 4 | D O N O T DI S T R I B U T E39
Instructions
B R E A K O U T
•You get 3 slides with historical data for the global beer market
and your assigned country: Mexico, the United States or Mexico
•Your task is to predict the future market growth drawing on these
data, and to argue your case
•There is no correct answer
There are 3 questions on the last page

C O N F I D E N T I A L | C O P Y R I G H T © T E L L U S A N T , I N C . 2 0 2 4 | D O N O T DI S T R I B U T E40
Mexico: Beer Global S-Curve
B R E A K O U T
Cambodia
India
Viet Nam
Mexico
Malaysia
Czechia
USA
0
20
40
60
80
100
120
140
160
1,000 10,000 100,000
Consumption per capita
(liter)
Disposable incomer per capita (PPP$)
GLOBAL S-CURVE FOR BEER
Cross-sectional by country in 2019
Source: WHO; TelluBase; Tellusant analysis

C O N F I D E N T I A L | C O P Y R I G H T © T E L L U S A N T , I N C . 2 0 2 4 | D O N O T DI S T R I B U T E41
Mexico: Macro Context
B R E A K O U T
0%10%20%30%40%50%60%70%80%90%100%
India
Viet Nam
Panama
Mexico
Poland
United States
Very LowLowMiddle-LowMiddleMiddle-HighHighVery High
SIZE OF SOCIOECONOMIC LEVELS, 2022
+
+ = − show expected changes 2022-2027
=

=
=
=−
−− + +++++
−− + ++++
− − = +− +
+++−
++
++
+−−
+−−
0.7%
1.0%
1.5%
0.9%
2.2%
2.0%
2022-2027
2014-2019
2022-2027
2014-2019
2022-2027
2014-2019
MEXICO MACRO GROWTH
Disp. Income
Disp. Income
/ Cap
Population
Source: TelluBase; Tellusant analysis

C O N F I D E N T I A L | C O P Y R I G H T © T E L L U S A N T , I N C . 2 0 2 4 | D O N O T DI S T R I B U T E42
Mexico: Beer Market
B R E A K O U T
1961
1996
1981
2009
2013
2019
0
10
20
30
40
50
60
5,000 6,000 7,000 8,000 9,000 10,00011,00012,00013,00014,00015,000
Beer consumption / Capita
(Liter)
Disposable income / Capita (PPP$)
MEXICO BEER CONSUMPTION VS INCOME (S -CURVE)
Actual vs diff. eq. model with damping for high consumption; 1961-2019
Source: WHO; TelluBase; Tellusant analysis

C O N F I D E N T I A L | C O P Y R I G H T © T E L L U S A N T , I N C . 2 0 2 4 | D O N O T DI S T R I B U T E43
Mexico: Questions
B R E A K O U T
•Assume the pandemic was neutral on demand 2029-2021.
Down 2020 and up by the same amount in 2021
•How much will the Mexican market grow / decline 2022-2027?
•How do you argue for this growth / decline?
•What else would like to know to make your analysis more robust?
Name up to 3 items

C O N F I D E N T I A L | C O P Y R I G H T © T E L L U S A N T , I N C . 2 0 2 4 | D O N O T DI S T R I B U T E44
USA: Beer Global S-Curve
B R E A K O U T
Cambodia
India
Viet Nam
Mexico
Malaysia
Czechia
USA
0
20
40
60
80
100
120
140
160
1,000 10,000 100,000
Consumption per capita
(liter)
Disposable incomer per capita (PPP$)
GLOBAL S-CURVE FOR BEER
Cross-sectional by country in 2019
Source: WHO; TelluBase; Tellusant analysis

C O N F I D E N T I A L | C O P Y R I G H T © T E L L U S A N T , I N C . 2 0 2 4 | D O N O T DI S T R I B U T E45
0.5%
0.8%
1.6%
1.7%
2.2%
2.5%
2022-2027
2014-2019
2022-2027
2014-2019
2022-2027
2014-2019
USA MACRO GROWTH
USA: Macro Context
B R E A K O U T
0%10%20%30%40%50%60%70%80%90%100%
India
Viet Nam
Panama
Mexico
Poland
United States
Very LowLowMiddle-LowMiddleMiddle-HighHighVery High
SIZE OF SOCIOECONOMIC LEVELS, 2022
+
+ = − show expected changes 2022-2027
=

=
=
=−
−− + +++++
−− + ++++
− − = +− +
+++−
++
++
+−−
+−−
Disp. Income
Disp. Income
/ Cap
Population
Source: TelluBase; Tellusant analysis

C O N F I D E N T I A L | C O P Y R I G H T © T E L L U S A N T , I N C . 2 0 2 4 | D O N O T DI S T R I B U T E46
USA: Beer Market
B R E A K O U T
1961
1981
1997
2007
2019
40
45
50
55
60
65
70
75
80
85
10,000 15,000 20,000 25,000 30,000 35,000 40,000
Beer consumption / Capita

(Liter)
Disposable income / Capita (PPP$)
UNITED STATES BEER CONSUMPTION VS INCOME (S -CURVE)
Actual vs diff. eq. model with damping for high consumption; 1961-2019
Source: WHO; TelluBase; Tellusant analysis

C O N F I D E N T I A L | C O P Y R I G H T © T E L L U S A N T , I N C . 2 0 2 4 | D O N O T DI S T R I B U T E47
USA: Questions
B R E A K O U T
•Assume the pandemic was neutral on demand 2029-2021.
Down 2020 and up by the same amount in 2021
•How much will the American market grow / decline 2022-2027?
•How do you argue for this growth / decline?
•What else would like to know to make your analysis more robust?
Name up to 3 items

C O N F I D E N T I A L | C O P Y R I G H T © T E L L U S A N T , I N C . 2 0 2 4 | D O N O T DI S T R I B U T E48
Viet Nam: Beer Global S-Curve
B R E A K O U T
Cambodia
India
Viet Nam
Mexico
Malaysia
Czechia
USA
0
20
40
60
80
100
120
140
160
1,000 10,000 100,000
Consumption per capita
(liter)
Disposable incomer per capita (PPP$)
GLOBAL S-CURVE FOR BEER (S-CURVE)
Cross-sectional by country in 2019
Source: WHO; TelluBase; Tellusant analysis

C O N F I D E N T I A L | C O P Y R I G H T © T E L L U S A N T , I N C . 2 0 2 4 | D O N O T DI S T R I B U T E49
0.6%
1.0%
4.3%
4.9%
4.9%
5.9%
2022-2027
2014-2019
2022-2027
2014-2019
2022-2027
2014-2019
VIET NAM MACRO GROWTH
Viet Nam: Macro Context
B R E A K O U T
0%10%20%30%40%50%60%70%80%90%100%
India
Viet Nam
Panama
Mexico
Poland
United States
Very LowLowMiddle-LowMiddleMiddle-HighHighVery High
SIZE OF SOCIOECONOMIC LEVELS, 2022
+
+ = − show expected changes 2022-2027
=

=
=
=−
−− + +++++
−− + ++++
− − = +− +
+++−
++
++
+−−
+−−
Disp. Income
Disp. Income
/ Cap
Population
Source: TelluBase; Tellusant analysis

C O N F I D E N T I A L | C O P Y R I G H T © T E L L U S A N T , I N C . 2 0 2 4 | D O N O T DI S T R I B U T E50
Viet Nam: Beer Market
B R E A K O U T
1968
2019
0
10
20
30
40
50
60
0 1,000 2,000 3,000 4,000 5,000 6,000
Beer consumption / Capita
(Liter)
Disposable income / Capita (PPP$)
VIET NAM BEER CONSUMPTION VS INCOME
Actual vs diff. eq. model with damping for high consumption; 1961-2019
Source: WHO; TelluBase; Tellusant analysis

C O N F I D E N T I A L | C O P Y R I G H T © T E L L U S A N T , I N C . 2 0 2 4 | D O N O T DI S T R I B U T E51
Viet Nam: Questions
B R E A K O U T
•Assume the pandemic was neutral on demand 2029-2021.
Down 2020 and up by the same amount in 2021
•How much will the Vietnamese market grow / decline 2022-2027?
•How do you argue for this growth / decline?
•What else would like to know to make your analysis more robust?
Name up to 3 items

C O N F I D E N T I A L | C O P Y R I G H T © T E L L U S A N T , I N C . 2 0 2 4 | D O N O T DI S T R I B U T E52C O N F I D E N T I A L | C O P Y R I G H T © T E L L U S A N T , I N C . 2 0 2 4 | D O N O T DI S T R I B U T E
Agenda
1 Introduction
2 Where in the World Is the Market?—The Macro View
3 Where in the World Is the Market?—The Market View
4 Breakout session
5 Q&A

C O N F I D E N T I A L | C O P Y R I G H T © T E L L U S A N T , I N C . 2 0 2 4 | D O N O T DI S T R I B U T E
240 Elm Street, Suite 200, Somerville MA 02144
Paseo de la Reforma 509, Piso 16, Cuauhtémoc, Ciudad de México 06500, México
+1-617-394-1800