Time base Generators (part-1)

3,061 views 84 slides Nov 16, 2020
Slide 1
Slide 1 of 84
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84

About This Presentation

Time base Generators
Part - 1


Slide Content

Time base Generators
Unit -IV

UNIT-IV: TIME-BASE GENERATORS
(10Periods)
•VoltageTime-BaseGenerators:GeneralfeaturesofaTimeBasesignal,
ExponentialSweepCircuit,ConstantCurrentSweepCircuit,UJTSweepCircuit,
MillerandBootstrapTime-Basegenerators-basicprinciples,TransistorMiller
Time-Basegenerator,TransistorBootstrapTime-Basegenerator.
•CurrentTime-BaseGenerators:ASimpleCurrentSweep,LinearityCorrection
throughAdjustmentofDrivingWaveform,TransistorCurrentTime-Base
generator.
Mr. M. Balaji, Dept. of ECE, SVEC 2

Time base Generators:
•isanelectroniccircuitwhichgeneratesanoutputvoltageorcurrent
waveform,aportionofwhichvarieslinearlywithtime.
TimebaseGeneratorsareoftwotypes:
•VoltageTimeBaseGenerators−Atimebasegeneratorthatprovidesan
outputvoltagewaveformthatvarieslinearlywithtimeiscalledasaVoltage
TimebaseGenerator.
•CurrentTimeBaseGenerator−Atimebasegeneratorthatprovidesan
outputcurrentwaveformthatvarieslinearlywithtimeiscalledasa
CurrentTimebaseGenerator.
Mr. M. Balaji, Dept. of ECE, SVEC 3

General features of a Time base signal:
Sweep time Restoration time
General sweep waveform Sawtoothwaveform
Mr. M. Balaji, Dept. of ECE, SVEC 4

•Aftergeneratingthesweepsignals,itistimetotransmitthem.The
transmittedsignalmaybesubjectedtodeviationfromlinearitywhenitis
transmittedthroughalinearnetwork.
The deviation from linearity is expressed in three most important ways.
They are −
•The Slope or Sweep Speed Error, e
s
•The Displacement Error, e
d
•The Transmission Error, e
t
Mr. M. Balaji, Dept. of ECE, SVEC 5

The Slope or Sweep Speed Error, e
s
•An important requirement of a sweep is that it must increase linearly with
time, i.e. the rate of change of sweep voltage with time be constant. This
deviation from linearity is defined as
Mr. M. Balaji, Dept. of ECE, SVEC 6

The Displacement Error, e
d
•Displacement error (ed) is the ratio of the maximum difference between the
actual sweep voltage v
s, and the linear sweep, v
s’which passes through the
initial and the end points of the sweep, to the sweep amplitude.
??????
??????=
??????
�−??????
�

??????
�
??????
�−??????
�

Mr. M. Balaji, Dept. of ECE, SVEC 7

The Transmission Error, e
t
•Transmission error (et): If a ramp voltage is transmitted through a
high-pass RC circuit, the output falls away from the input
•The transmission error e
tis given as:
??????
�=
??????
�

−????????????
??????
�′
V
s’ = input sweep
V
s= Output sweep
Mr. M. Balaji, Dept. of ECE, SVEC 8

Exponential Sweep Circuit
Mr. M. Balaji, Dept. of ECE, SVEC 9

Mr. M. Balaji, Dept. of ECE, SVEC 10

Mr. M. Balaji, Dept. of ECE, SVEC 11

Mr. M. Balaji, Dept. of ECE, SVEC 12

Mr. M. Balaji, Dept. of ECE, SVEC 13

Mr. M. Balaji, Dept. of ECE, SVEC 14

Mr. M. Balaji, Dept. of ECE, SVEC 15

Mr. M. Balaji, Dept. of ECE, SVEC 16

Unijunction Transistor
Mr. M. Balaji, Dept. of ECE, SVEC 17

UJT: Unijunction Transistor
Mr. M. Balaji, Dept. of ECE, SVEC 18

Mr. M. Balaji, Dept. of ECE, SVEC 19

Sweep circuit using UJT
Mr. M. Balaji, Dept. of ECE, SVEC 20

Mr. M. Balaji, Dept. of ECE, SVEC 21

Mr. M. Balaji, Dept. of ECE, SVEC 22

Mr. M. Balaji, Dept. of ECE, SVEC 23

•Design a relaxation oscillator using a UJT, with V
V= 3V, η=0.68 to 0.82, Ip=
2µA, I
V= 1mA, V
BB= 20V, the output frequency is to be 5KHz. Calculate the
typical peak-to –peak output voltage.
•Sol:
The given UJT has the following parameters:
Mr. M. Balaji, Dept. of ECE, SVEC 24

•Thus, R must be in the range of 17KΩto 2.15MΩ. If R is large, C must
be very small. Therefore Choose R such that C is not very small.
Mr. M. Balaji, Dept. of ECE, SVEC 25

•In the UJT sweep circuit, VBB = 20V, VYY= 50V, R= 5KΩ, C= 0.01µF, η= 0.5
and Vv= 2V. Using the UJT characteristics, find
(a) the amplitude of sweep signal
(b) the slope and displacement error
(c) duration of the sweep
(d) the recovery time
Sol:
0.6 + 0.5* 20 = 10.6V
(a)Sweep signal amplitude:
Vs= Vp-Vv= 10.6V-2V = 8.6V
Mr. M. Balaji, Dept. of ECE, SVEC 26

•Slope Error e
s=Vs/V
•V=peak to peak value of the sweep
•V= Vyy-Vv= 50-2=48V
•e
s=Vs/V = 8.2/48= 0.179
•Displacement Error e
d= e
s/8=0.022
•Sweep time= Ts= RC ln (Vyy-Vv/ Vyy-Vp) = 9.87µs
•Recovery time=Tr= (2+5C)Vv= 4.1µs
Mr. M. Balaji, Dept. of ECE, SVEC 27

Miller and Bootstrap Time base generators: basic Principles
•Asimpleexponentialsweepgeneratorisshowninfigure,essentially
producesanonlinearsweepvoltage.
Mr. M. Balaji, Dept. of ECE, SVEC 28

•Inanexponentialsweepgenerator,sincethecapacitorcharges
exponentially,theresultantsweepgeneratedisanon-linearone.To
getalinearsweep,thecapacitorisrequiredtochargewitha
constantcurrent.
•Letusconsiderthemethodsoflinearizinganexponentialsweep
•Introduceanauxiliarygenerator,v,asshowninFig.12.9(b).
•IfvisalwayskeptequaltothevoltageacrossC(i.e.,v=v
C),asthe
polaritiesofvandv
Careopposite,thenetvoltageintheloopisV.
Theni=V/Rwhichisaconstant.
Mr. M. Balaji, Dept. of ECE, SVEC 29

•Thatmeans,thecapacitor
chargingcurrentisconstant
andperfectlinearityis
achieved.
•LetusidentifythreenodesX,
YandZ.Inacircuitone
terminal,ischosenasa
referenceterminalorthe
groundterminal.
Mr. M. Balaji, Dept. of ECE, SVEC 30

Miller integrator sweep generator
•Now let Z be the ground terminal
•The circuit can be redrawn as Fig. 12.10(b)
Mr. M. Balaji, Dept. of ECE, SVEC 31

Mr. M. Balaji, Dept. of ECE, SVEC 32

•Sincevandv
c
areequalin
magnitudeandoppositein
polarity,vi=0.
•Hence,iftheauxiliary
generatorisreplacedbyan
amplifierwithXandZas
theinputterminalsand
YandZasoutputterminals
•thenthegainAofthe
amplifiershouldbeinfinity.
Replacingtheauxiliary
generatorbyanamplifier
withgaininfinity,thecircuit
showninFig.12.10(b)is
redrawnasthatshownin
Fig.12.10(c).
Mr. M. Balaji, Dept. of ECE, SVEC 33

Mr. M. Balaji, Dept. of ECE, SVEC 34

Mr. M. Balaji, Dept. of ECE, SVEC 35

Mr. M. Balaji, Dept. of ECE, SVEC 36

Slope error in Miller’s Sweep generator
•inwhichtheauxiliarygeneratorisreplacedbyanamplifierwithgain
infinity.
•Thévenizingthecircuitattheinput,theThéveninvoltagesourceand
itsinternalresistanceasV’andR’
Mr. M. Balaji, Dept. of ECE, SVEC 37

Mr. M. Balaji, Dept. of ECE, SVEC 38

Mr. M. Balaji, Dept. of ECE, SVEC 39

•Ast→∞,thecapacitorisfullycharged,hence,nocurrentflowsin
it.Thus,tocalculatetheoutputvoltage,thecapacitorcanbe
replacedbyanopencircuit.TheresultantcircuitisasshowninFig.
12.11(c).
Att=∞;v
i=V’
??????
Hencev
o=AV’
Weknowthatforanexponentialsweep,e
s=V
s/V
WhereV
sisthesweepamplitudeandVisthepeaktopeaksignalof
theoutputswing
Inthiscaseofmiller’ssweep,thetotalpeaktopeaksignalofthe
outputswing,v
o=AV’,Hence
Mr. M. Balaji, Dept. of ECE, SVEC 40

EvenifR
iissmall,asAislarge,theslopeerrorofamiller’ssweepis
verysmall.Hence,forallpracticalpurposesthissweepgenerator
producesanearlinearsweep.
Mr. M. Balaji, Dept. of ECE, SVEC 41

Transistor miller time base generator:
Mr. M. Balaji, Dept. of ECE, SVEC 42

Mr. M. Balaji, Dept. of ECE, SVEC 43

Mr. M. Balaji, Dept. of ECE, SVEC 44

Mr. M. Balaji, Dept. of ECE, SVEC 45

Mr. M. Balaji, Dept. of ECE, SVEC 46

Mr. M. Balaji, Dept. of ECE, SVEC 47

Mr. M. Balaji, Dept. of ECE, SVEC 48

•(vi) Calculation of the slope error: The slope error of the
Miller’s sweep generator is given by the relation:
where,R
itheresistancethroughwhichthecapacitorcharges
whentheswitchisOFF.
Tocalculatee
s,therefore,wehavetocalculateAandR
iof
thecommon-emitteramplifier.
TheCEamplifierusestheh-parametermodelasfollows
Mr. M. Balaji, Dept. of ECE, SVEC 49

Mr. M. Balaji, Dept. of ECE, SVEC 50

Mr. M. Balaji, Dept. of ECE, SVEC 51

R
iand A can be calculated using above equations and hence, the
value of e
s
Mr. M. Balaji, Dept. of ECE, SVEC 52

Bootstrap Sweep Generators:
•Alternatively,inthecircuitshowninFig.
12.9(b)letYbethegroundterminal.
•TheresultantcircuitisshowninFig.
12.13(a).
•Redrawingthiscircuitandreplacingthe
auxiliarygeneratorbyanamplifierwithX
andYasinputterminalsandZandYasthe
outputterminals,theamplifiershouldhavea
gainofunityasv=v
C,asshowninFig.
12.13(b).
Mr. M. Balaji, Dept. of ECE, SVEC 53

Replacingthegeneratorbyanamplifier,thecircuitshowninFig.12.13(b)isredrawnas
showninFig.12.13(c).ThesweepgeneratorrepresentedinFig.12.13(c)iscalleda
bootstrapsweepgeneratorbecausetheincreasinginputatXisaccompaniedbyan
identicalriseintheoutputatZ,asthegainoftheamplifierisunity
Mr. M. Balaji, Dept. of ECE, SVEC 54

Mr. M. Balaji, Dept. of ECE, SVEC 55

Mr. M. Balaji, Dept. of ECE, SVEC 56

Slope error in Bootstrap Sweep generators:
•ConsiderthebootstrapsweepgeneratorshowninFig.12.14(a)in
whichtheauxiliarygeneratorisreplacedbyanamplifierwithgain
1,whichobviouslyisanemitterfollower.
•IfinitiallythecapacitorisunchargedandifSisclosedatt=0,then
thevoltageacrossCandR
i,i.e.,v
i=0,R
iisreplacedbyashort
circuit.Asv
i=0,Av
i=0andisalsoreplacedbyashortcircuit.
Mr. M. Balaji, Dept. of ECE, SVEC 57

Mr. M. Balaji, Dept. of ECE, SVEC 58

Mr. M. Balaji, Dept. of ECE, SVEC 59

and as R
oof the emitter follower is very small, then v
o≈ 0.
Mr. M. Balaji, Dept. of ECE, SVEC 60

Mr. M. Balaji, Dept. of ECE, SVEC 61

Mr. M. Balaji, Dept. of ECE, SVEC 62

Mr. M. Balaji, Dept. of ECE, SVEC 63

Mr. M. Balaji, Dept. of ECE, SVEC 64

Transistor bootstrap time-base generator
Mr. M. Balaji, Dept. of ECE, SVEC 65

•ApracticalbootstraprampgeneratorisshowninFig.12.16(a).
•TherampisgeneratedacrosscapacitorC
1whichischargedfromthecurrent
throughR
1.
•ThedischargetransistorQ
1,whenON,keepsV
1atV
CE(sat)untilanegative
inputpulseisapplied.
•Q
2isanemitterfollowerwithalowoutputresistance.
•EmitterresistanceR
Eisconnectedtoanegativesupply(VEE)insteadof
referencingittothegroundtoensurethatQ2remainsconductingeven
whenitsbasevoltageV
1isclosetotheground.
•CapacitorC
3,calledthebootstrappingcapacitance,hasamuchhigher
capacitancethanC
1.
•C
3ismeanttomaintainaconstantvoltageacrossR
1andthus,maintaina
constantchargingcurrent.
Mr. M. Balaji, Dept. of ECE, SVEC 66

(a)Quiescentconditions:Thevoltagesunderquiescentconditions(beforethe
applicationofatrigger)arecalculatedasillustratedbelow,usingFig.12.16(b).
Mr. M. Balaji, Dept. of ECE, SVEC 67

•Whentheinputtriggersignalisnotpresent,Q
1hassufficientbasecurrent.
Therefore,Q
1isdrivenintosaturationandthevoltageV
1acrossthe
capacitorC
1isVCE(sat).V
1=VCE(sat)(pointX),typically0.2VforSi,as
showninFig.12.16(b).Q
2isanemitterfollowerforwhichinputisV
1andits
outputv
ois:
Mr. M. Balaji, Dept. of ECE, SVEC 68

Mr. M. Balaji, Dept. of ECE, SVEC 69

(b)Sweepgeneration:
•At t = 0, as the trigger is applied,
the voltage at the base of Q
1
goes negative, Q
1is OFF.
•The voltage at node K, V
K= V
CC+
V
1and D
1is OFF and is an open
circuit. The voltage at node X is
V
1.
Mr. M. Balaji, Dept. of ECE, SVEC 70

Mr. M. Balaji, Dept. of ECE, SVEC 71

FromFig.12.16(d),itisseenthat
theoutputv
ovarieslinearlyonly
whenthedurationofthegating
signal(Tg)issmallsothatinthis
periodv
odoesnotreachVCC.
However,ifTgislarge,theoutput
v
omayreachV
CCevenbeforeTg.
Whenv
o=VCC,thevoltageV
CE2of
Q
2ispracticallyzero(saturation).
Q
2nolongerbehavesasanemitter
follower.v
oandV
1thereforeremain
atV
CC.ThecurrentV
CC/R
1now
flowsthroughC
3,R
1andthrough
thebase-emitterdiodeofQ
2.
Mr. M. Balaji, Dept. of ECE, SVEC 72

Mr. M. Balaji, Dept. of ECE, SVEC 73

Mr. M. Balaji, Dept. of ECE, SVEC 74

Mr. M. Balaji, Dept. of ECE, SVEC 75

Mr. M. Balaji, Dept. of ECE, SVEC 76

(c) Calculation of retrace time, Tr:
•Attheendofthegatesignal,att=Tg,acurrentI
B1=(V
CC/R
B)againflows
intothebaseterminalofQ
1.Q
1onceagaintriestogointosaturation.
However,tillsuchtimeV
CEofQ
1isV
CE(sat)(Q
1isinsaturation),thecollector
current,i
C1remainsconstantat
•AsshowninFig.12.18,thecurrenti
R1throughR
1andthedischarging
currenti
dofC
1nowconstitutesi
C1,thecollectorcurrentofQ
1,neglecting
thesmallbasecurrentI
B2ofQ
2,
Mr. M. Balaji, Dept. of ECE, SVEC 77

Therefore V1 and vofall linearly to the initial value.
The voltage variation during the retrace time Tris:
Mr. M. Balaji, Dept. of ECE, SVEC 78

•Iftheretracetimeislarge,ittakesalongertimetoinitiateanew
sweepcycle.FromEq.(12.53),itisseenthatR
Bwillhavetobesmall
toreducetheretracetime.However,ifR
Bistoosmall,thenthe
collectorcurrentofQ1becomeslargeas:
ThisresultsingreaterdissipationinQ1.Duringtheperiod,T=Tg+Tr,though
C3isalargecapacitor,itmaystillloosesomecharge.Thecircuitissaidto
haverecoveredcompletelyonlywhenthechargelostbyC3isregained.The
minimumrecoverytimeT1forC3canbefoundoutasfollows:
Mr. M. Balaji, Dept. of ECE, SVEC 79

To reduce T
1, V
EEmay be increased. However, this increases the quiescent
current in Q
2and hence, the dissipation in it
Mr. M. Balaji, Dept. of ECE, SVEC 80

(d) Calculation of the slope error of a bootstrap sweep circuit:
•Theslopeerrorofthebootstrap,assumingthatthechargeonC3remains
unalteredduringthesweepduration,isgivenbytherelation:
To calculate e
s, we have to
calculate A and R
i. For a common
collector amplifier we have:
Mr. M. Balaji, Dept. of ECE, SVEC 81

Mr. M. Balaji, Dept. of ECE, SVEC 82

FortheMiller’ssweepcircuit,VCC=25V,RC2=5kΩ,RC1=10kΩ.
Thedurationofthesweepis5ms.Thesweepamplitudeis25V.
Calculate(a)thevalueofC;(b)theretracetimeand(c)theslope
error.Thetransistorhasthefollowingparameters:hfe=80,hie=1kΩ,
hoe=1/40kΩandhre=2.5×10−4.
•Sol: (a)
Mr. M. Balaji, Dept. of ECE, SVEC 83

Mr. M. Balaji, Dept. of ECE, SVEC 84