UNIT-IV: TIME-BASE GENERATORS
(10Periods)
•VoltageTime-BaseGenerators:GeneralfeaturesofaTimeBasesignal,
ExponentialSweepCircuit,ConstantCurrentSweepCircuit,UJTSweepCircuit,
MillerandBootstrapTime-Basegenerators-basicprinciples,TransistorMiller
Time-Basegenerator,TransistorBootstrapTime-Basegenerator.
•CurrentTime-BaseGenerators:ASimpleCurrentSweep,LinearityCorrection
throughAdjustmentofDrivingWaveform,TransistorCurrentTime-Base
generator.
Mr. M. Balaji, Dept. of ECE, SVEC 2
Time base Generators:
•isanelectroniccircuitwhichgeneratesanoutputvoltageorcurrent
waveform,aportionofwhichvarieslinearlywithtime.
TimebaseGeneratorsareoftwotypes:
•VoltageTimeBaseGenerators−Atimebasegeneratorthatprovidesan
outputvoltagewaveformthatvarieslinearlywithtimeiscalledasaVoltage
TimebaseGenerator.
•CurrentTimeBaseGenerator−Atimebasegeneratorthatprovidesan
outputcurrentwaveformthatvarieslinearlywithtimeiscalledasa
CurrentTimebaseGenerator.
Mr. M. Balaji, Dept. of ECE, SVEC 3
General features of a Time base signal:
Sweep time Restoration time
General sweep waveform Sawtoothwaveform
Mr. M. Balaji, Dept. of ECE, SVEC 4
•Aftergeneratingthesweepsignals,itistimetotransmitthem.The
transmittedsignalmaybesubjectedtodeviationfromlinearitywhenitis
transmittedthroughalinearnetwork.
The deviation from linearity is expressed in three most important ways.
They are −
•The Slope or Sweep Speed Error, e
s
•The Displacement Error, e
d
•The Transmission Error, e
t
Mr. M. Balaji, Dept. of ECE, SVEC 5
The Slope or Sweep Speed Error, e
s
•An important requirement of a sweep is that it must increase linearly with
time, i.e. the rate of change of sweep voltage with time be constant. This
deviation from linearity is defined as
Mr. M. Balaji, Dept. of ECE, SVEC 6
The Displacement Error, e
d
•Displacement error (ed) is the ratio of the maximum difference between the
actual sweep voltage v
s, and the linear sweep, v
s’which passes through the
initial and the end points of the sweep, to the sweep amplitude.
??????
??????=
??????
�−??????
�
′
??????
�
??????
�−??????
�
′
Mr. M. Balaji, Dept. of ECE, SVEC 7
The Transmission Error, e
t
•Transmission error (et): If a ramp voltage is transmitted through a
high-pass RC circuit, the output falls away from the input
•The transmission error e
tis given as:
??????
�=
??????
�
′
−????????????
??????
�′
V
s’ = input sweep
V
s= Output sweep
Mr. M. Balaji, Dept. of ECE, SVEC 8
Exponential Sweep Circuit
Mr. M. Balaji, Dept. of ECE, SVEC 9
Mr. M. Balaji, Dept. of ECE, SVEC 10
Mr. M. Balaji, Dept. of ECE, SVEC 11
Mr. M. Balaji, Dept. of ECE, SVEC 12
Mr. M. Balaji, Dept. of ECE, SVEC 13
Mr. M. Balaji, Dept. of ECE, SVEC 14
Mr. M. Balaji, Dept. of ECE, SVEC 15
Mr. M. Balaji, Dept. of ECE, SVEC 16
Unijunction Transistor
Mr. M. Balaji, Dept. of ECE, SVEC 17
UJT: Unijunction Transistor
Mr. M. Balaji, Dept. of ECE, SVEC 18
Mr. M. Balaji, Dept. of ECE, SVEC 19
Sweep circuit using UJT
Mr. M. Balaji, Dept. of ECE, SVEC 20
Mr. M. Balaji, Dept. of ECE, SVEC 21
Mr. M. Balaji, Dept. of ECE, SVEC 22
Mr. M. Balaji, Dept. of ECE, SVEC 23
•Design a relaxation oscillator using a UJT, with V
V= 3V, η=0.68 to 0.82, Ip=
2µA, I
V= 1mA, V
BB= 20V, the output frequency is to be 5KHz. Calculate the
typical peak-to –peak output voltage.
•Sol:
The given UJT has the following parameters:
Mr. M. Balaji, Dept. of ECE, SVEC 24
•Thus, R must be in the range of 17KΩto 2.15MΩ. If R is large, C must
be very small. Therefore Choose R such that C is not very small.
Mr. M. Balaji, Dept. of ECE, SVEC 25
•In the UJT sweep circuit, VBB = 20V, VYY= 50V, R= 5KΩ, C= 0.01µF, η= 0.5
and Vv= 2V. Using the UJT characteristics, find
(a) the amplitude of sweep signal
(b) the slope and displacement error
(c) duration of the sweep
(d) the recovery time
Sol:
0.6 + 0.5* 20 = 10.6V
(a)Sweep signal amplitude:
Vs= Vp-Vv= 10.6V-2V = 8.6V
Mr. M. Balaji, Dept. of ECE, SVEC 26
•Slope Error e
s=Vs/V
•V=peak to peak value of the sweep
•V= Vyy-Vv= 50-2=48V
•e
s=Vs/V = 8.2/48= 0.179
•Displacement Error e
d= e
s/8=0.022
•Sweep time= Ts= RC ln (Vyy-Vv/ Vyy-Vp) = 9.87µs
•Recovery time=Tr= (2+5C)Vv= 4.1µs
Mr. M. Balaji, Dept. of ECE, SVEC 27
Miller and Bootstrap Time base generators: basic Principles
•Asimpleexponentialsweepgeneratorisshowninfigure,essentially
producesanonlinearsweepvoltage.
Mr. M. Balaji, Dept. of ECE, SVEC 28
•Inanexponentialsweepgenerator,sincethecapacitorcharges
exponentially,theresultantsweepgeneratedisanon-linearone.To
getalinearsweep,thecapacitorisrequiredtochargewitha
constantcurrent.
•Letusconsiderthemethodsoflinearizinganexponentialsweep
•Introduceanauxiliarygenerator,v,asshowninFig.12.9(b).
•IfvisalwayskeptequaltothevoltageacrossC(i.e.,v=v
C),asthe
polaritiesofvandv
Careopposite,thenetvoltageintheloopisV.
Theni=V/Rwhichisaconstant.
Mr. M. Balaji, Dept. of ECE, SVEC 29
•Thatmeans,thecapacitor
chargingcurrentisconstant
andperfectlinearityis
achieved.
•LetusidentifythreenodesX,
YandZ.Inacircuitone
terminal,ischosenasa
referenceterminalorthe
groundterminal.
Mr. M. Balaji, Dept. of ECE, SVEC 30
Miller integrator sweep generator
•Now let Z be the ground terminal
•The circuit can be redrawn as Fig. 12.10(b)
Mr. M. Balaji, Dept. of ECE, SVEC 31
Mr. M. Balaji, Dept. of ECE, SVEC 32
•Sincevandv
c
areequalin
magnitudeandoppositein
polarity,vi=0.
•Hence,iftheauxiliary
generatorisreplacedbyan
amplifierwithXandZas
theinputterminalsand
YandZasoutputterminals
•thenthegainAofthe
amplifiershouldbeinfinity.
Replacingtheauxiliary
generatorbyanamplifier
withgaininfinity,thecircuit
showninFig.12.10(b)is
redrawnasthatshownin
Fig.12.10(c).
Mr. M. Balaji, Dept. of ECE, SVEC 33
Mr. M. Balaji, Dept. of ECE, SVEC 34
Mr. M. Balaji, Dept. of ECE, SVEC 35
Mr. M. Balaji, Dept. of ECE, SVEC 36
Slope error in Miller’s Sweep generator
•inwhichtheauxiliarygeneratorisreplacedbyanamplifierwithgain
infinity.
•Thévenizingthecircuitattheinput,theThéveninvoltagesourceand
itsinternalresistanceasV’andR’
Mr. M. Balaji, Dept. of ECE, SVEC 37
Mr. M. Balaji, Dept. of ECE, SVEC 38
Mr. M. Balaji, Dept. of ECE, SVEC 39
•Ast→∞,thecapacitorisfullycharged,hence,nocurrentflowsin
it.Thus,tocalculatetheoutputvoltage,thecapacitorcanbe
replacedbyanopencircuit.TheresultantcircuitisasshowninFig.
12.11(c).
Att=∞;v
i=V’
??????
Hencev
o=AV’
Weknowthatforanexponentialsweep,e
s=V
s/V
WhereV
sisthesweepamplitudeandVisthepeaktopeaksignalof
theoutputswing
Inthiscaseofmiller’ssweep,thetotalpeaktopeaksignalofthe
outputswing,v
o=AV’,Hence
Mr. M. Balaji, Dept. of ECE, SVEC 40
EvenifR
iissmall,asAislarge,theslopeerrorofamiller’ssweepis
verysmall.Hence,forallpracticalpurposesthissweepgenerator
producesanearlinearsweep.
Mr. M. Balaji, Dept. of ECE, SVEC 41
Transistor miller time base generator:
Mr. M. Balaji, Dept. of ECE, SVEC 42
Mr. M. Balaji, Dept. of ECE, SVEC 43
Mr. M. Balaji, Dept. of ECE, SVEC 44
Mr. M. Balaji, Dept. of ECE, SVEC 45
Mr. M. Balaji, Dept. of ECE, SVEC 46
Mr. M. Balaji, Dept. of ECE, SVEC 47
Mr. M. Balaji, Dept. of ECE, SVEC 48
•(vi) Calculation of the slope error: The slope error of the
Miller’s sweep generator is given by the relation:
where,R
itheresistancethroughwhichthecapacitorcharges
whentheswitchisOFF.
Tocalculatee
s,therefore,wehavetocalculateAandR
iof
thecommon-emitteramplifier.
TheCEamplifierusestheh-parametermodelasfollows
Mr. M. Balaji, Dept. of ECE, SVEC 49
Mr. M. Balaji, Dept. of ECE, SVEC 50
Mr. M. Balaji, Dept. of ECE, SVEC 51
R
iand A can be calculated using above equations and hence, the
value of e
s
Mr. M. Balaji, Dept. of ECE, SVEC 52
Bootstrap Sweep Generators:
•Alternatively,inthecircuitshowninFig.
12.9(b)letYbethegroundterminal.
•TheresultantcircuitisshowninFig.
12.13(a).
•Redrawingthiscircuitandreplacingthe
auxiliarygeneratorbyanamplifierwithX
andYasinputterminalsandZandYasthe
outputterminals,theamplifiershouldhavea
gainofunityasv=v
C,asshowninFig.
12.13(b).
Mr. M. Balaji, Dept. of ECE, SVEC 53
Replacingthegeneratorbyanamplifier,thecircuitshowninFig.12.13(b)isredrawnas
showninFig.12.13(c).ThesweepgeneratorrepresentedinFig.12.13(c)iscalleda
bootstrapsweepgeneratorbecausetheincreasinginputatXisaccompaniedbyan
identicalriseintheoutputatZ,asthegainoftheamplifierisunity
Mr. M. Balaji, Dept. of ECE, SVEC 54
Mr. M. Balaji, Dept. of ECE, SVEC 55
Mr. M. Balaji, Dept. of ECE, SVEC 56
Slope error in Bootstrap Sweep generators:
•ConsiderthebootstrapsweepgeneratorshowninFig.12.14(a)in
whichtheauxiliarygeneratorisreplacedbyanamplifierwithgain
1,whichobviouslyisanemitterfollower.
•IfinitiallythecapacitorisunchargedandifSisclosedatt=0,then
thevoltageacrossCandR
i,i.e.,v
i=0,R
iisreplacedbyashort
circuit.Asv
i=0,Av
i=0andisalsoreplacedbyashortcircuit.
Mr. M. Balaji, Dept. of ECE, SVEC 57
Mr. M. Balaji, Dept. of ECE, SVEC 58
Mr. M. Balaji, Dept. of ECE, SVEC 59
and as R
oof the emitter follower is very small, then v
o≈ 0.
Mr. M. Balaji, Dept. of ECE, SVEC 60
Mr. M. Balaji, Dept. of ECE, SVEC 61
Mr. M. Balaji, Dept. of ECE, SVEC 62
Mr. M. Balaji, Dept. of ECE, SVEC 63
Mr. M. Balaji, Dept. of ECE, SVEC 64
Transistor bootstrap time-base generator
Mr. M. Balaji, Dept. of ECE, SVEC 65
(a)Quiescentconditions:Thevoltagesunderquiescentconditions(beforethe
applicationofatrigger)arecalculatedasillustratedbelow,usingFig.12.16(b).
Mr. M. Balaji, Dept. of ECE, SVEC 67
•Whentheinputtriggersignalisnotpresent,Q
1hassufficientbasecurrent.
Therefore,Q
1isdrivenintosaturationandthevoltageV
1acrossthe
capacitorC
1isVCE(sat).V
1=VCE(sat)(pointX),typically0.2VforSi,as
showninFig.12.16(b).Q
2isanemitterfollowerforwhichinputisV
1andits
outputv
ois:
Mr. M. Balaji, Dept. of ECE, SVEC 68
Mr. M. Balaji, Dept. of ECE, SVEC 69
(b)Sweepgeneration:
•At t = 0, as the trigger is applied,
the voltage at the base of Q
1
goes negative, Q
1is OFF.
•The voltage at node K, V
K= V
CC+
V
1and D
1is OFF and is an open
circuit. The voltage at node X is
V
1.
Mr. M. Balaji, Dept. of ECE, SVEC 70
Mr. M. Balaji, Dept. of ECE, SVEC 71
FromFig.12.16(d),itisseenthat
theoutputv
ovarieslinearlyonly
whenthedurationofthegating
signal(Tg)issmallsothatinthis
periodv
odoesnotreachVCC.
However,ifTgislarge,theoutput
v
omayreachV
CCevenbeforeTg.
Whenv
o=VCC,thevoltageV
CE2of
Q
2ispracticallyzero(saturation).
Q
2nolongerbehavesasanemitter
follower.v
oandV
1thereforeremain
atV
CC.ThecurrentV
CC/R
1now
flowsthroughC
3,R
1andthrough
thebase-emitterdiodeofQ
2.
Mr. M. Balaji, Dept. of ECE, SVEC 72
Mr. M. Balaji, Dept. of ECE, SVEC 73
Mr. M. Balaji, Dept. of ECE, SVEC 74
Mr. M. Balaji, Dept. of ECE, SVEC 75
Mr. M. Balaji, Dept. of ECE, SVEC 76
(c) Calculation of retrace time, Tr:
•Attheendofthegatesignal,att=Tg,acurrentI
B1=(V
CC/R
B)againflows
intothebaseterminalofQ
1.Q
1onceagaintriestogointosaturation.
However,tillsuchtimeV
CEofQ
1isV
CE(sat)(Q
1isinsaturation),thecollector
current,i
C1remainsconstantat
•AsshowninFig.12.18,thecurrenti
R1throughR
1andthedischarging
currenti
dofC
1nowconstitutesi
C1,thecollectorcurrentofQ
1,neglecting
thesmallbasecurrentI
B2ofQ
2,
Mr. M. Balaji, Dept. of ECE, SVEC 77
Therefore V1 and vofall linearly to the initial value.
The voltage variation during the retrace time Tris:
Mr. M. Balaji, Dept. of ECE, SVEC 78
•Iftheretracetimeislarge,ittakesalongertimetoinitiateanew
sweepcycle.FromEq.(12.53),itisseenthatR
Bwillhavetobesmall
toreducetheretracetime.However,ifR
Bistoosmall,thenthe
collectorcurrentofQ1becomeslargeas:
ThisresultsingreaterdissipationinQ1.Duringtheperiod,T=Tg+Tr,though
C3isalargecapacitor,itmaystillloosesomecharge.Thecircuitissaidto
haverecoveredcompletelyonlywhenthechargelostbyC3isregained.The
minimumrecoverytimeT1forC3canbefoundoutasfollows:
Mr. M. Balaji, Dept. of ECE, SVEC 79
To reduce T
1, V
EEmay be increased. However, this increases the quiescent
current in Q
2and hence, the dissipation in it
Mr. M. Balaji, Dept. of ECE, SVEC 80
(d) Calculation of the slope error of a bootstrap sweep circuit:
•Theslopeerrorofthebootstrap,assumingthatthechargeonC3remains
unalteredduringthesweepduration,isgivenbytherelation:
To calculate e
s, we have to
calculate A and R
i. For a common
collector amplifier we have:
Mr. M. Balaji, Dept. of ECE, SVEC 81
Mr. M. Balaji, Dept. of ECE, SVEC 82
FortheMiller’ssweepcircuit,VCC=25V,RC2=5kΩ,RC1=10kΩ.
Thedurationofthesweepis5ms.Thesweepamplitudeis25V.
Calculate(a)thevalueofC;(b)theretracetimeand(c)theslope
error.Thetransistorhasthefollowingparameters:hfe=80,hie=1kΩ,
hoe=1/40kΩandhre=2.5×10−4.
•Sol: (a)
Mr. M. Balaji, Dept. of ECE, SVEC 83