Training Report Of 2x600MW, Kalishindh Super Thermal Power Project Jhalawar(Rajasthan)

RADHEYSHYAMMEENA 8,452 views 100 slides Nov 03, 2014
Slide 1
Slide 1 of 100
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100

About This Presentation

Training Report Of 2x600MW, Kalishindh Super Thermal Power Project Jhalawar(Rajasthan)

Under
Asst. Prof. Neeraj Kumar Garg
Dept. of Electrical Engineering

Radhey Shyam Meena
B.Tech. In Electrical Engineering
Govt. Engineering College Jhalawar
Rajasthan Technical University Kota


Slide Content

1
TRAININGREPORT
Ka
T
P
P
(JHALAWAR)
RRVUNL
SUBMITTEDBY
RADHEYSHYAMMEENA
B.TECH,ELECTRICALENGINEERING
GOVTENGINEERINGCOLLEGEJHALAWAR,RAJASTHAN326023

2
A
PRACTICALTRAININGREPORT
ON
2X600MWKALISINDHTHERMALPOWER
PROJECT,JHALAWAR
(RRVUNL)
SUBMITTED
INPARTIALFULFILMENT
FORTHEDEGREE
BACHELOROFTECHNOLOGY(B.TECH)
IN
ELECTRICALENGINEERING
DEPT.OFELECTRICALENGINEERING
GOVTENGINEERINGCOLLEGEJHALAWAR
RAJASTHANTECHNICALUNIVERSITYKOTA
SUBMITTEDBY
RADHEYSHYAMMEENA
B.TECH,FINALYEAR
ENROLLMENT NO.9E1EJEEM20P037
MAY-JUNE2012

3
PREFACEOFTRAINING
Intoday’sworld,electricityhasanimportantrole.today,relyonelectricityforthe
fulfillmentofevenhisbasicneedscomfortableliving.Electricitycontributesthelargest
sharetoacountry’seconomicgrowth.Itisthemostpowerfulresourceandhasbrought
industrialrevolutionworldwide.Ithasresultedinsocialchangestooandraisedthe
standardofliving.InIndia,severalorganizationslikeNHPC,NTPC,POWERGRID,
andotherstateelectricityboardsetc.areengagedinelectricitygeneration.RRVUNLis
oneofthelargestamongthesewithanhonourableContribution.
Theriseincivilizationiscloselyrelatedtoimprovementsintransportationand
requirementofenergythatisnotreadilyavailableinlargequantitiesbutisalsoreadily
transportable.Thereareseveralsourseofenergyinworldinwhichthermalpowerplant
isalsoasourseofenergy.Itgiveelectricalenergy.Averypeculiarfactaboutelectrical
energyisthatneitheritisdirectlyavailableinnaturenoritisdirectlyusedfinallyinthis
form,yetitissowidelyproducedandisthemostpopularhighgradeenergy.
Thepurposebehindtrainingistounderstandthedifficultconceptsinabetter
waywithgainofknowledge.ReportstartswithabriefintroductionofKaTPP.
Whilewritingthereportandwhileiwasonmytrainingiwaswonderingthat
Scienceandtechnologyareaseverexpandingfieldandtheengineersworkinghardday
andnightandmakethelifeagiftforus.

4
ACKNOWLEDGEMENT
“Everygoodworkrequirestheguidanceofsomeexperts.”
Manylives&destiniesaredestroyedduetothelackofproperguidance,directions&
opportunities.ItisinthisrespectIfeelthatIaminmuchbetterconditiontodaydueto
continuousprocessofmotivation&focusprovidedbymyparents&teachersingeneral.
Theprocessofcompletionofthisprojectwasatediousjob&requirescare&supportat
allstages.Iwouldliketohighlighttheroleplayedbyindividualstowardsthis.
Iobligetoacknowledgemyheartiestgratitudetoallhonourablepeoplewho
helpedmeduringmysummertrainingatKALISINDHTHERMAL POWER
PROJECT-JHALAWAR,(RRVUNL)RAJASTHAN.
IwanttoexpressmythankstoMr.S.S.MeenaChiefEngineerKaTPP,
Mr.S.N.RejaProjectInchargeTCELtd.andMr.SunilGangwal,G.M.(EE)BGR
EnergySystemforgrantingmethepermissionfordoingmysummertrainingatthis
projectAndtogivetheirvaluabletimeandkindco-operation.
IwouldliketothankMr.S.N.Soni(X-EnElect-1),Mr.Raju(Tata
Group),&Mr.B.B.Malav(A.EnElect-2)forprovidingthenecessaryguidance.
IwouldliketoThankMr.LekhrajMeena(J.En,Elct-2,RRVUNL),Mr.
DeepakKhndelwal(J.En,Elect-1,RRVUNL),Mr.MithunPatidar(J.En,Elect-1,
RRVUNL),&Mr.RamanSir(J.En,TGOperation,BGRENERGYSYSTEM)for
providingmetheknowledgeabouttheworkandgivingtheirvaluableguidanceduring
mytrainingperiod.
IWouldCo-HeartedlyThankAndUseThisOpportunityToExpress
GratitudeAndDebtnessToMr.M.M.Sharma(Principal,Gecj),Mr.NeerajGarg
H.O.D.ElectricalEngineering,Mr.ShradMahesvri&Mr.NitinArya,Placement
Officer,T&PCell,GovtEngineeringCollegeJhalawarForAllowingMeToDo
MyTrainingAtThisPlace.
IamalsothanksalottootherstaffmembersofRRVUNL,BGR&TCEfor
theirfurtherco-operationtogainthebetterknowledgeabouttheworldclasspower
plantprojectindistt–Jhalawar,Rajasthan.
RADHEYSHYAMMEENA
B.TECH4
th
YEAR
ELECTRICALENGINEERING

5

6
COLLEGE-CERTIFICATE
ThisistocertifythatMr.RADHEY SHYAMMEENA,B.Tech.(Electrical
Engineering)4
th
yearVII.semesterhassubmittedHisTrainingreportentitled
“..2X600MW KALISINDH THERMAL POWER PROJECT
JHALAWAR(RAJASTHAN) RRVUNL..”undermy/ourguidance.Reportsubmitted
byhimisbasedonpracticalknowledgeandasgoodasinmyexperience.
Mr.NEERAJGARG
ASST.PROF.&H.O.D.ELECTRICALENGINEERING
DesignationofSeminarGuide

7
CONTENT
CHAPTER-01INTRODUCATION
1.1INTRODUCATION OVERVIEWOFKATPP……………………… ...01
1.2ENERGYGENERATED INKATPP………………………………… ...05
1.3PLANTOVERVIEW…………………………………………………… ..05
1.4PRINCIPLEOFOPERATION………………………………………… .07
1.5THERMALPLANTOPERATIONPROCEDURE…………………… 10
CHAPTER-02COALHANDLINGSYSTEM
2.1COALHANDLINGPLANT…………………………………………… ...13
2.2STAGEOFCOALHANDLING……………………………………… .....16
CHAPTER-03RAWWATERCYCLE&COOLINGSYSTEM
3.1WATERTREATMENT PLANT……………………………………… .…18
3.2DMPLANT………………………………………………………………… 23
3.3COOLINGTOWER……………………………………………………… ..24
3.4H2GENERATION PLANT…………………………………………… .…28
CHAPTER-04STGSYSTEM
4.1BOILER…………………………………………………………… ..……….29
4.2TURBINE…………………………………………………………………… 34
4.3GENERATOR……………………………………………………………… 37
4.4DIESEL-GENERATOR SET…………………………………………… ...39
CHAPTER-05TRANSFORMER
5.1TRANSFORMER ………………………………………………………… .40
5.1.1SLDGENERATING TRANSFORMER
5.1.2SLDUNITTRANSFORMER
CHAPTER-06ESP&ASPCYCLESYSTEM
6.1ELECTROSTATICPRECIPITATOR………………………………… ..47
6.2ASHHANDLINGPLANT……………………………………… ...………49
CHAPTER-07SWITCHYARD ,C&IPROTECTION
7.1SWITCHYARD …………………………………………………………… 51
a)SLDCAPCITIVEVOLTAGETRANSFORMER
b)SLDINTERCONNECTED TRANSFORMER
c)SINGLELINEDIAGRAMOFSWITCHYARD
d)SLD400KVLINE-03DAHRABAY-12

8
e)SLD400KVLINE-01BATAWDA BAY-05
f)SLD400KVLINE-02BATAWDABAY-09
g)SLD400KVSPARELINEBAY-01
h)SLD400KVTIELINEBAY-02
i)SLD400KVICTLINEBAY-03
j)SLD220KVLINE-01JHALAWAR BAY-01
k)SLD220KVLINE-02JHALAWAR BAY-03
l)SLD220KVICTLINEBAY-02
m)SLD220KVBUSCOUPLERBAY-05
n)SLD220KVTRANSFERCOUPLERBAY-04
7.2SWITCHGEAR …………………………………………………………… 77
7.3PROTECTION…………………………………………………………… ..79
7.4CONTROLROOM………………………… .……………………… ...……81
7.5AUXILLARYSUPPLY………………… .………………………………… 82
CHAPTER-08EFFICIENCY
8.1POWERPLANTEFFICIENCYCALCULATION …..………………… .85
8.2CONCLUSION……………… ...………………………………… ..………..87
CHAPTER-07
REFERENCE/BIBLIOGRAPHY- ……………………………………………………… .…88
APPENDICES:--
APPENDIX-I-PLANTLOCTEDINRAJASTHAN
APPENDIX-II-POWERDISTRIBUTIONMAPOFRAJASTHAN
APPENDIX-III-KaTPPPLANMAP
APPENDIX-IV-KaTPPSWITCHYARD PLANMAP

9
LISTOFFIGURES
1. KaTPP PROJECT & PLANT OVERVIEW
2
2. PLANT RUNNING VIEW
7
3. RANKING CYCLE
8
4. ENERGY CYCLE
9
5. COALCYCLE&COALPROCESS 14-
15
6. WATERTREATMENT PROCESS 21-
22
7. COOLING TOWER
24
8. FLOW OF WATER &KaTPP BOILER
32
9. TURBINE & HP/ LP/ IP
36
10. GENERATOR
37
11. STEAM OVERVIEW
39
12. GT/UT/UAT
43
13. ASH HANDLING PLANT
50
14. SWITCHYARD
52
15. CIRCUIT BREAKER
54
16. LIGHTING ARRESTER
57
17. EARTHING ISOLATOR
58
18. CURRENT TRANSFORMER
59
19. CVT
60
20. ICT
64
21. CONTROL ROOM
81

10
LISTOFTABLE
1.PLANTREPORT 05
2.IMPORTANTDATE 06
3.BOILERMOTORDATASHEET 31
4.TURBINEDATASHEET 35
5.GENERATORDATASHEET 38
6.DGSATDATASHEET 39
7.GENERATINGTRANSFORMER DATASHEET 41
8.UNITTRANSFORMER DATASHEET 44
9.PARAMETERFORCIRCUITBREAKER 55-56
10ISOLATORPARAMETER 57
11LIGHTINGARRESTERSHEET 58
12CURRENTTRANSFORMER 59
13CAPACITORVOLTAGETRANSFORMER 60-61
14.INTERCONNECTEDTRANSFORMER 63

11
SINGLELINEDIAGRAM
1.GENERATINGTRANSFORMER 42
2.UNITTRANSFORMER 45
3.CVT 62
4.ICT 65
5.400KVLINE-03DAHRABAY-12 66
6.400KVLINE-01BATAWDABAY-05 67
7.400KVLINE-02BTAWDABAY-09 68
8.400KVSPARELINEBAY-01 69
9.400KVTIELINEBAY-02 70
10.400KVICTLINEBAY-03 71
11.220KVLINE-01JHALAWARBAY-01 72
12.220KVLINE-02JHALAWAR BAY-03 73
13.22KVICTBAY-02 74
14.220KVBUSCOUPLERBAY-05 75
15.220KVTRANSFERCOUPLERBAY-04 76

1
CHAPTER-01INTRODUCATION
Everybodymustbehavingathoughtthatathermalpowerplantisaplacewhereelectricityis
produced.Butdoyouknowhowitisproduced?Thechemicalenergystoredisconvertedtoheat
energywhichformstheinputofpowerplantandelectricalenergyproducedbythegeneratoris
theoutput.Poweristhesinglemostimportantnecessityforthecommonpeopleandindustrial
developmentofanation.Inaconvectionalpowerplanttheenergyisfirstconvertedtoa
mechanicalworkandthenisconvertedtoelectricalenergy.Thustheenergyconversions
involvedare:
ThefirstenergyconversiontakesinwhatiscalledaBoilerorSteamGenerator,thesecondin
whatiscalledaTurbineandthelastconversiontakesplaceintheGenerator.
Athermalpowerstationisapowerplantinwhichtheprimemoverissteamdriven.Wateris
heated,turnsintosteamandspinsasteamturbinewhichdrivesanelectricalgeneratorafterit
passesthroughtheturbine,thesteamiscondensedinacondenserandrecycledtowhereit
washeated;thisisknownasarankinecycle.
Commercialelectricutilitypowerstationsareusuallyconstructedonalargescaleand
designedforcontinuousoperation.Electricpowerplantstypicallyusethree-
phaseelectricalgeneratorstoproducealternatingcurrent(ac)electricpowerat
afrequencyof50hz.

13
1.1INTRODUCATION
KaTPP

14
FIG-1.KATPP(1)PLANTPROJECTVIEW,FIG-2(2)PRESENTVIEW
KaTPP
BGR
RRVUNL
TCE
2x600MWKALISINDHTHERMALPOWER
PROJECT-JHALAWAR
RRVUNL
OWNER
TATACONSULTING
ENGINEERSLTD.MUMBAI
OWNER'S
CONSULTANT
BGRENERGYSYSTEMLTD.
CHENNAI
EPC
CONTRACTOR

15
ThesiteofKalisindhThermalPowerProjectislocatedinNimoda,Undal,Motipura,
SinghaniaandDevrivillagesofTehsilJhalarapatan,Distt.Jhalawar.Theproposed
capacityofcoalbasedThermalPowerProjectis1200MW.Theprojectsiteisabout
12kmfromJhalawar(Distt.Headquarter)andNH-12.Itis2kmfromstatehighway
No.19and8kmfromproposedRamganjMandi-Bhopalbroadgaugerailline.
ThesiteselectioncommitteeofCentralElectricityAuthorityhasvisitedthe
NimodhaanditsadjoiningvillagesofJhalawarDistt.Andsitewasfoundtechno-
economicalfeasibleforsettingupofaPowerProject.TheGovt.ofRaj.haveincluded
thatprojectin11thfiveyearplan.Theestimatedrevisedcostoftheprojectis
Rs.7723Crores.M/s.TCEBanglorehasbeenappointedasthetechnicalconsultant
fortheproject.Thestateirrigationdepartmenthasalloted1200mcftwaterforthe
projectfromproposedKalisindhdam.TheoriginoftheKalisindhriverisfromnorthern
slopofVindyaMountains.TheriverentersfromMPtoRajasthannearvillageBinda.
Afterflowing145kminRajasthan,theKalisindhrivermergesinChambalrivernear
NaneravillageofDistt.Kota.Itscatchmentareaisabout7944sq.kminJhalawar&
KotaDistt.TheexistingDamislocatedatBhawarasavillage,primarilyforP.H.E.D.
purposeisbeingupliftedforprovidingastoraseof1200mcftwaterforthispower
project.
TheGORhasalloted842bighaGovernmentlandandaquired1388bigha
privatekhatedarilandforthethermalproject.Phase-1willbeconstructedon1400
bighalandonly.EPCcontracthasbeenawardedtoM/s.BGREnergySystem
Chennaiondt.09/07/08,throughICBrouteatcostRs.4900Crores.Ministryofcoal,
Govt.ofIndiahasalloted‘ParaseastandKantabasin‘coalblockstoRVUNin
Chhatisgarhstate.TheRVUNhasformednewcompanyunderjoinedventurewith
M/s.AdaniEnterprisesforminingofcoalblocksandnewcompanystartedthework.
Annualcoalrequirementfortheprojectis56LacsTPA.GORalsodecidedtosetup
twonewunitsof2x660MWinnextfewyears.

16
1.1.2ENERGYGENERATED INKaTPP
TotalgenerationCapacity
=(2x600)
=1200MW
TotalgeneratedElectricity(inonehour)
=1200MWx1
=12.00Lakhunits
TotalgeneratedElectricity(in24hours)
=12.00x24=288.0Lakhsunits
AmountofCoalrequired(perday)inKaTPPis
=0.5x288.0x100000Kg.=144millionkg
1.1.3PLANTOVERVIEW
Project KalisindhSuperThermalPowerProjectJhalawar
Capacity 1200MW(2x600MW)
ProjectSite
Village-Undel,Motipura,Nimoda,Singhania&Deveriof
TehsilJhalarapatan,Distt.Jhalawar
ProjectLocation
Theprojectsiteisabout12kmfromNH-12,2kmfromstate
highwayand8kmfromproposedRamganjMandi-Bhopal
broadgaugerailline.
LandArea 2230Bigha/564Hq.(1400bigha/350Hq.inIstage)
Watersourceand
quantity
DamonKalisindhriver.3400CuM/Hrs.
FuelSource
MainFuel-Coalfromcaptivecoalblocks(Paraseastand
kantaBasininChhatisgarhstate)SecondaryFuel-FO/HSD.
QuantityofFuel(at
80%PLF)
Coal-56LacsTPAFO/HSD-13000-14000KL/A
ElectroStatic
Precipitator
99.98%Capacity
StackHeight 275Mtr.
Estimatedrevised
Cost
Rs.7723Crores

17
1.1.4IMPORTANTMILESTONEFORUNIT-1/2&COMMON SYSTEM
SI
NO.
Activity
Scheduled
DateU#1
Actual
Date
Scheduled
DateU#2
Actual
Date
01StartofBoilerFoundation 28.04.200924.01.200911.07.200923.03.2009
02StartofBoilerErection 07.12.200923.10.200905.03.201026.03.2010
03BoilerDrumLifting 06.05.201019.05.201003.07.201014.08.2010
04Readinessofstartuppower 12.02.2011 28.04.2011
05
Completionofcommissioningof
DMPlant
25.12.2010 25.12.2010
06BoilerHydroTest 05.01.201108.04.201130.03.2011
07
ReadinessofChimney(1st/2nd
Flueonly)
02.06.201130.04.201127.04.2011
08ReadinessofUCB 24.09.2010 09.12.2010
09BoilerLightup 07.06.2011 05.09.2011
10StartofCondenserErection 23.06.201027.11.201015.11.2010
11StartofTGErection 30.08.201020.12.201008.11.2010
12
TurbineGenerator&Auxiliaries
BoxUp
24.06.2011 13.09.2011
13ReadinessofCoolingTower 02.08.2011 02.11.2011
14TurbineonBarringGear 16.08.2011 02.11.2011
15CompletionofCoalhandling 30.08.2011 30.08.2011
16CompletionofAshhandling 13.06.2011 19.08.2011
17Readinessof400KVSwitchYard11.12.2010 07.02.2011
18
Rollingof Turbine &
Synchronisation
05.09.2011 07.12.2011
19CompletionofTrialOperation 02.01.2012 02.04.2012
20ProvisionalHandingOver 2013 2013

18
1.2PRINCIPLEOFOPERATION
Foreachprocessinavapourpowercycle,itispossibletoassumeahypotheticalorideal
processwhichrepresentsthebasisintendedoperationanddonotproduceanyextraneous
effectlikeheatloss.
1.Forsteamboiler,thiswouldbeareversibleconstantpressureheatingprocessofwater
toformsteam.
2.Forturbine,theidealprocesswouldbeareversibleadiabaticexpansionofsteam.
3.Forcondenser,itwouldbeareversibleaconstantpressureheatrejectionasthesteam
condensertillitbecomessaturatedliquid.
4.Forpump,theidealprocesswouldbethereversibleadiabaticcompressionofliquid
endingattheinitialpressure.Whenalltheabovefourcyclesarecombined,thecycle
achievediscalledRANKINECYCLE.Hencetheworkingofathermalpowerplantis
baseduponRankinecyclewithsomemodification.

19
FIG-3THERMALPLANTPROCESSDIAGRAM
APULVERIZEDCOALFUELEDPOWERPLANT
AtypicalpulverizedcoalfueledpowerplantisbasedonRankineThermodynamiccycle.
“ARankinecycleisavapourcycleFurnacethatreliesontheisentropicexpansionof
highpressuregastoproducework”.LetusseeasuperheatRankinecycle:

20
FIG-4RANKINGCYCLE
Where,Wt–mechanicalpowerproducedbyturbine
Thisfacilityfirstproducessteaminaboiler(steamgenerator).Thissteamisusedto
rotateturbinewhichisconnectedtoashaftofgenerator.Henceelectricityisproduced
here.Theusedsteamisthencondensedinacondenser,andthecondensedliquidisused
againinthesteamgenerator.Thisisasimplephenomenon,understoodbyeverybody.
Forallthisweneedafuel.Asthenamesuggestherecoalisusedasfuel.Coalisoneof
thecheapestandmostpreferredfossilfuelusedasakeytomostofthepowerplants.
UsuallydeliveredbytrainfromMinestotheCoalHandingPlant(CHP).TheCHP
unloadsthisitbecomemoreeconomicaltounloadthecoal.Thenthecoalstacked,
reclaimed,crushed,andconveyedittothestoragesilosnearthesteamgenerator.Thenit
isfedthroughtheFeedertothePulverizer.Feederismainlyusedtoweighttheamountof
coalgoingtothePulverizerperhour.FromtheFeederthecoalisfedtothePulverizer
whichpowdersitandthenitiscarriedtothesteamgeneratorusingpressurizedair.
Withinthesteamgeneratorthecoalisatomizedandburnedandtheheatenergyproduced
isusedforproducingsteam.Heretwotypesofsteamnamelysuperheated&reheated
steamareproducedinacycle.Thesteamturbinegeneratorconvertsthethermalenergy
ofsuperheatedandreheatedsteamtoelectricalenergy.Thefirstenergyconversionis
carriedinBoilerorsteamgenerator;thesecondiscarriedoutinTurbineandthelastone
carriedoutintheGenerator.

21
FIG-5ENERGYCYCLE
InitiallythesuperheatedsteamisfedtoHighPressure(HP)turbine.Ithasatemperature
of540°C(approx.)andapressureofabout140Kg/cm2.Thentheexhaustedsteamfrom
itistakentothereheatersothatitcanbereheatedandfedbacktoIntermediatePressure
(IP)turbine.Herethetemperatureismaintainedthesameasthatofsuperheatedsteam
butpressureisreducedto35Kg/cm2.ThentheexhaustedsteamisdirectlyfedtoLow
Pressure(LP)turbinehavingthereducedtemperatureandpressureofabout1Kg/cm2.
ThentheexhaustedsteamfromtheLPsectioniscondensedinthecondenser.The
condensedliquidismovedfromcondenserbyCondensatePumpsthroughLowPressure
RegenerativeFeedwaterheaterstoaDeaerator.BoilerFeedPumps(BFPs)movesthe
deaeratedliquidthroughHPheaterstothesteamgenerators.Extractionsteamissupplied
totheLP&HPregenerativeheaterstoimprovecycleefficiency.Thencomestothe
systemoffanswhichkeepsthesystemworkingbyprovidingthevaluableairwhere
required.Therearethreepairsoffans,namely,ForcedDraft(FD)fan,InducedDraft(ID)
fan,PrimaryAir(PA)fan.FDfanssuppliescombustionairtothesteamgeneratorand
PAfanstransportsthecoalintothesteamgenerator.IDfansremovethefluegasesfrom
thesteamgeneratorandexhaustitthroughchimney.Coolingwaterforthecondenseris
suppliedbythecirculatingwatersystem,whichtakestheheatremovedfromthe
condenserandrejectsittothecoolingtowersorotherheatsink.Thisallworkingis
controlledfromasingleplacecalledcontrolroom.Itenablestheoperatortodirectthe
plantoperationforreliableandefficientproductionofelectricalenergy.Thisisachieved
bythecontrolsysteminstalledbytheC&Igroup.TheseareDAS(DataAcquisition
System),ACS(AnalogControlSystem),FSSS(FurnaceSafeguardSupervisorySystem),
andotherrelaysgoverningnumerousactivities.Lastbutnottheleastistheswitchingand
transmissionmethodsusedhere.Thegeneratedpowercannotbetransmittedassuch.Itis
steppedupto132KVAor400KVAthenpassedthroughaseriesofthreeswitchesan

22
isolator,acircuitbreakerandanisolator.Threephasesystemisusedforthepower
transmission.Eachgeneratorhasitsownswitchyardandtransmissionarrangement.
1.3THERMALPLANTOPERATIONPROCEDURE
Thebasicunderstandingofthemodernthermalpowerstationintermsofmajorsystems
involvedcanbedoneunderthreebasicheadsviz.generatingsteamfromcoal,conversion
ofthermalenergytomechanicalpowerandgeneration&loaddispatchofelectric
power.
1.COALTOSTEAM:
Thecoalisburntattherateupto200tonnesperhour.
Fromcoalstores,thefueliscarriedonconveyorbeltstobunkersthroughcoaltipper.
Itthenfallsintocoalpulverizingmill,whereitisgroundedintopowderasfineas
flour.
AirisdrawnintotheboilerhousebydroughtfanandpassedthroughPreheaters.
Someairispasseddirectlytobunkerandrest,throughprimaryairfan,topulverizing
millwhereitismixedwithpowderedcoal.
Themixtureisthencarriedtobunkeroffurnacewhereitmixeswithrestoftheairand
burnstogreatheat.
Thisheatscirculatingwaterandproducessteam,whichpassestosteamdrumatvery
highpressure.
ThesteamisthenheatedfurtherintheSuperheaterandfedtohighpressurecylinder
ofsteamturbine.
Thesteamisthenpassedtoothercylindersofturbinethroughreheater.
Thespentsteamissenttocondenser,whereitturnsbacktowatercalledcondensate.
Condensateissenttolowerpartofsteamdrumthroughfeedheaterandeconomizer.
Thefluegasesleavingboilerareusedforheatingpurposeinfeedheater,economizer,
andairPreheater.

23
Thefluegasesarethenpassedtoelectro-staticprecipitatorandthen,throughdraught
fan,tochimney.
2.STEAMTOMECHANICAL POWER:
Steamfirstentersthehighpressurecylinderofturbinewhereitpassesoveraringof
stationary/fixedbladeswhichactsasnozzleanddirectssteamontoaringofmoving
blades.
Steampassestotheothercylindersthroughreheaterandtheprocessisrepeatedagain
andagain.
Thisrotatestheturbineshaftupto3000rpm.
Ateachstage,steamexpands,pressuredecreasesandvelocityincreases.
3.MECHANICAL TOELECTRICALPOWER:
Theshaftisconnectedtoanalternator’sarmature.
Thusthearmatureisrotatedandelectriccurrentisproducedinthestator’swindings.
Thegeneratedelectricityisoforder25,000volts.
4.SWITCHINGANDTRANSMISSION:
Electricitygeneratedcannotbetransmittedassuch.
Itisfedtoonesideofgenerator’stransformerandsteppedupto132000,220000,or
400000volts.
Itisthenpassedtoaseriesofthreeswitchesanisolator,acircuit-breaker,andanother
isolator.
Fromcircuit-breaker,currentistakentobusbarsandthentoanothercircuit-breaker
withit’sassociatedisolatorbeforebeingfedtothemainGrid.
Eachgeneratorhasitsownswitchingandtransmissionarrangement.
Three-phasesystemisusedforpowertransmission.
5.CONTROLANDINSTRUMENTATION
ControlandInstrumentation(C&I)systemsareprovidedtoenablethepowerstationto
beoperatedinasafeandefficientmannerwhilerespondingtothedemandsofthe

24
nationalgridsystem.Thesedemandshavetobemetwithoutviolatingthesafetyor
operationalconstraintsoftheplants.Forexample,metallurgicallimitationsareimportant
astheysetlimitsonthemaximumpermissibleboilermetaltemperatureandthechemical
constituentsoftheFeedwater.ThecontrolandInstrumentationsystemprovidesthe
meansofthemanualandautomaticcontrolofplantoperatingconditionsto:
Maintainanadequatemarginfromthesafetyandoperationalconstraints.
Monitorthesemarginsandtheplantconditions,andprovideimmediateindications
andpermanentrecords.
Drawtheattentionoftheoperatorbyanalarmsystemtoanyunacceptablereduction
inthemargins.
Shutdowntheplantiftheoperatingconstraintsareviolated.
TYPESOFINSTRUMENTS
Thedifferenttypesofinstrumentsnormallyusedaregivenbelow:
INDICATORS–Theseareoftwocategories,namelylocalandremote.Localindicators
areselfcontainedandselfoperativeandaremountedonthesite.TheRemoteindicators
areusedfortelemeterpurposesandmountedinthecentralizedcontrolroomorcontrol
panel.Theindicatorsaresometimesprovidedwithsignalingcontactswhereeverrequired.
The
Remoteindicatorsdependonelectricity,electronics,pneumaticorhydraulicsystemfor
theiroperationandaccordinglytheyarenamed.Theindicatorcanbeclassifiedas
analogueordigitalonthebasisoffinaldisplayofthereading.
·RECORDERS –Thesearenecessarywherevertheoperatinghistoryisrequiredfor
analyzingthetrendsandforanyfuturecasestudiesorefficiencypurposes.Recorderscan
beofsinglepointmeasuringasingleparameterormultipointmeasuringanumberof
parametersbysingleinstruments.Multipointrecordersareagaincategorizedas
multipointcontinuousormultipointdotrecorders.Themultipointdotrecordersselectthe
pointoneaftertheotherinasequencewhereasthecontinuousrecordersmeasure
simultaneouslyallthepoinS.
CHAPTER-02COALHANDLINGSYSTEM

25
2.1COALHANDLINGPLANT
INTRODUCTION:-
Everythermalpowerplantisbasedonsteamproducedontheexpanseof
heatenergyproducedoncombustionoffuel.Fuelsusednarecoalandfueloil.Coalis
moreimportantasoilisoccasionallyused.Coaliscategorisedasfollowsdependingupon
fixedcarbon,volatilematterandmoisturecontent:
Anthracitehaving86%fixedcarbon
Bituminoushaving46to86%fixedcarbon
Lignitehaving30%fixedcarbonand
Peathaving5to10%fixedcarbon
CoalfromminesistransportedtoCHPinrailwaywagons.Itisunloadedin
trackhoppers.Eachprojectrequirestransportationoflargequantityofcoalminestothe
powerstationsite.Eachprojectisestablishednearcoalminewhichmeetsthecoal
requirementsforthespanofitsentireoperationallife.Forthepurposeeachplanthas
MerryGo-Round(MGR)railtransportationsystem.Theloadingoperationofthecoal
raketakesplacewhileitismovingunderthesiloatapresentspeedof0.8Km/hr.the
loadingtimeforeachwagonisoneminute.Forunloadingofcoalfromthewagonsan
undergroundtrackhopperisprovidedatthepowerstationend.
Thetermcoalhandlingplantmeanstostoreandtohandlethecoalwhichis
transportedbythetrainandconveytothebunkerswiththehelpofbeltconveyers.
Throughthebunkerscoalistransferredtothecoalmillanddriftedtothefurnace.The
coalhandlingplantincludeswagontippler,conveyerbelt,crusherhouse,stacker&
reclaimer,bunkers&coalmill.
CHPthennormallyfollowsthreecoalpaths:
1.PATHA–FROMTRACKHOPPERSTOBUNKERS.
2.PATHB–FROMTRACKHOPPERSTOSTOCKYARD.
3.PATHC–FROMSTOCKYARDTOBUNKERS.
PATH-A

26
PATH-B
PATH-C
FIG-06COALCYCLEPATH

27
FIG-07WAGONTIPLAR,FIG-08CRUSHURHOUSE,PROCESSVIEW
CoalSupplyinKaTPP:-Ministryofcoal,Govt.ofIndiahasalloted‘Paraseastand
Kantabasin‘coalblockstoRVUNinChhatisgarhstate.TheRVUNhasformednew
companyunderjoinedventurewithM/s.AdaniEnterprisesforminingofcoalblocks
andnewcompanystartedthework.Annualcoalrequirementfortheprojectis56Lacs
MILLS
Thesearebasicallycoalpulverizingmills.Thermalpowerstationsusepulverizedcoal
firingsystem.Inthisthecoalisreducedtofinenesssuchthat70to80%passesthrougha

28
200meshsieve.Thisfinepowderedcoaliscalledpulverizedcoalandiscarriedforward
totheburnerbyairthroughpipes.
Advantageofpulverizedcoalfiringsystem:–
1.Efficientutilizationoflowgradeandcheapcoal.
2.Flexibilityinfiring.
3.Abilitytomeetfluctuatingload.
4.Betterreactiontoautomaticcontrol.
5.Highefficiencyofboiler.
6.Easycompletecombustion.
Theonlydisadvantagebeingitshighinitialcost.
2.1STAGESOFCOALHANDLINGPLANT:-
WAGONTIPPLER:-
ThetermWagonTipplercontainstwowordsWAGON&TIPPLER.Wagon
meansthecompartmentoftrainwhichisjustlikeacontainerwhichisusedtocarrythe
coalfromminestogeneratingstations&thewordTipplermeansamachine,whichis
usedtounloadthewagonintothehopper.Hopperisjustlikeavesselwhichismadeof
concrete&itiscoveredwithathickironnetonitstop.Herebigsizecoalpiecesare
hammeredbythelaborstodisposeitintothehopper.
CoalisfedintomillthroughGravimetricfeeder.WhentheA.C.supplyis
switchedonthebowlrotateandduetocentrifugalforce,thecoalmovesintheoutward
direction.Asthecoalcomebetweengrinderandbowl,itgetspulverized.Theunwanted
materialisremovedthroughscrapers.Thepulverizedcoalisthencarriedtoburnersby
primaryairthroughoutletopenings.Theheavierparticles,astheyrise,collidewith
classifiersandfallbackinmillforfurthergrind.Sealingairisprovidedthroughsealair
fantoavoiddepositionofcoaldustinbearingsandspringmechanism.
CONVEYOFCOALTOCRUSHERHOUSE:-
Afterunloadedthecoalwagonintotheconcretehopper,thesupplyofcoal
iscontrolbyApronFeederandScrapper.Apronfeederismadeofiron.Afterpassing
throughthescrapperconveyorthecoalisfedintotheRollCrusherwherethecrushing

29
ofcoaltakesplace.Intherollcrushertherearetwoshaftsonwhichmetalhammerare
mounted,thesetworollersrotatesinoppositedirectiontoeachother.Whenthecoal
comesinbetweenthesetworollersitgetscrushedintosmallpiecesandthenconveyto
theseparatorthroughbeltconveyor.InPenthousethereisabeltweightierwhichisused
toweightthebeltwhichcarrythecoalandfeedintotheseparatorwiththehelpofFlap
Gate.
PRIMARYCRUSHERHOUSE:-
Coalcrusherhouseisapartofcoalhandlingplantwherethecoalis
crushedwiththehelpofacrushermachines.Incrushermachinethereispairoftwo
shaftsonwhichhammerarefixed.Bothshaftsrotatesinoppositedirectionduetowhich
whencoalcomesbetweenthetwoshaftscrushedintothesmallpiecesandconveyedto
thebunkersoropenstorage(stacker)accordingtotherequirementthroughthebelt
conveyor.
STACKER&RECLAIMER:-
Stackerisaplacewheretheopenstorageofacoaltakesplace.Reclaimer
meanstheunloadingofcoalfromthestacker.
COALMILL:-
Incoalmill,coalispulverizedorcrushedproperlyintothepowdered
form.Hotairismixedwithpowderedcoaltoremovethemoisturefromthecoal,which
increasestheefficiencyofplant.Pulverizationisdonetoincreasethesurfaceareaof
coal.Fromcoalmillcoalisdrifttothefurnacewiththehelpofair.Therearefourmain
equipmentofcoalmill,whichareasfollows:-
Bunkers:-Thesearebasicallyusedtostorecrushedcoilwhichcomesfromcrusher
house.
Feeders:-Theseareusedtocontrolthesupplyofcrushedcoaltothemilldepending
uponloadcondition.
Feederpipe:-FeederpipeareusedtoconveythecrushedcoaltotheTubemillorBowl
mill.
Tubemill:-Tubemillisusedtopulverizethecrushedcoal.Inthetube

30
CHAPTER-03,RAW-WATER CYCLE&COOLINGSYSTEM
3.1WATERTREATMENT PLANT
Theprincipalprobleminhighpressureboileristocontrolcorrosionand
steamquality.Internalcorrosioncostpowerstationcroresofrupees.
Thewateravailablecannotbeusedinboilersassuch.Theobjectiveofwater
treatmentplantistoproducetheboilerfeedwatersothatthereshallbe
·Noscaleformation
·Nocorrosion
·Noprimingorformingproblems
Thetreatedwateriscalled‘DematerializedWater’.Thetreatmentprocesscanbedivided
intwosections:
1.Pre-treatmentsection
2.Demineralisationsection
PRE-TREATMENT SECTION
Pre-treatmentplantremovessuspendedsolidslikeclay,salt,plants,
micro-organismsetcformrawwatertogiveclarifiedwater.Suspendedsolidscanbe
separableornon-separable.Separablesolidsareheavier&largeandcaneasilybe
removedbyanaerator.Non-separablesolidshavefinersizeandtakelongtosettledown.
Hencetheyarerequiredtobeflocculated.Inthis,waterisfirstdozedwithlimeandalum.
Thisforcesfinerparticlestocoagulateincreasingtheirweightandsize.Non-separable
solidscannowbeseparatedinclariflocculator.Theclarifiedwateristhenstoredin
clarifiedwaterstoragetanks.
DEMINERALISATION SECTION
TheclarifiedwaternowgoestoFCA(activatedcarbonfilter)whereit
de-chlorinated.Waterthenpassesthroughcationexchangerwhereweakandstrong
acidiccationsareremovedonaddingresin.
RH+Na RNa+H2SO4
Ca CaHNO3
Mg Mg H2CO3

31
(inwater)(drain)(leftinwater)
ThewateristhensenttodegasserwhereCO2isremoved.Fromdegasser,watercomesto
anionexchangerwhereanionsareremoved.
ROH+H2SO4 RSO4+H2O
(Resin)HClCl(demineralised
HNO3NO3water)
(Fromcationexchanger)(Drain)
Waterthusachievedistherequireddemineralisedwaterwhichisthenstoredin
demineralisedwaterstoragetanks.
REGENERATION
Rechargingtheexhaustedformofresini.e.regenerationemploying5%ofacid/alkalias
below:
Cationresin:
RNa+HCl RH+NaCl
K (freshKCl
Ca resin)CaCl2
Mg MgCl2
(Exhaustedresin) (removedby
rinsing)
Anionresin:
RSO4+NaOH ROH+Na2SO4
Cl (freshNaCl
NO3 resin)NaNO3
(exhaustedresin) (removedby
rinsing)
Thefreshresinthusproducedisreusedindemineralisationprocess.

32
WATERTREATMENT STAGE:-
River(rawwater)→Clarification→Filtration→Demineralization
CLARIFICATIONANDFILTERATIONOFWATER:-
Riverwatercontainsdifferentimpuritiesi.e.
 Suspendedimpurities
 Biologicalimpurities
Solubleimpurities
Colloidalimpurities
WORKING:-
Therawwaterentersthroughvalveandthanchemicalsisadded.
Chlorineandalumareadded.Chlorineisaddedtoremovebacteriaetc.Alumsare
addedtomaketheimpuritiesheavier,oncetheimpuritiesbecomeheavierthanano.of
flocsareformed.Bymixingthealums,heavyimpuritiesaresettledownduetogravity
andlaterremoved.Thetimerequiredfortheformationofflociscalledretentiontime
whichisgenerally3hoursbutthiscan’tbeachievedasitrequirelargetank.Inorderto
copeupthelimitationCLARRIFOCCULATION TANKisused.
Thisflocculationtankisconsistof
1.Clarificationzone
2.flocculationzon
Aftertheadditionofchemicalthebasicrequirementarisesisofmixing.Thusflash
mixersareused.Normallythechemicalsmixnaturallybutwhentherawwatercontains
muchimpuritythanagitatorsareusedtomixthem.
Clarrifocculationtankhasacentralpillarwhichhasfourwindowsat90
degree.Theoutercircleishalfofwindowssothatlevelofwaterisarisethenitflows
downthroughthesewindowsintooverflowchannel.Aftermixingfromflashmixer,the
waterpassesontocentralpillarandfollowsthepathasshowninfig.i.e.itmovesto
max.flocareaandcomesoutfromwindowat3.5mheight.Thedownwardflowis
throughperforatedwallwhichsinkstherawwater.Duetothelongpatharetentiontime
of4houriseasilyavailable.

33
FIG-08WATERTREANMENTPROCESS

34
FIG-9CLORIFICATIONSYSTEM,FIG-11WATERFLOWCYCLE

35
Thecapacityofwaterinthisplantis1000*1000lt./hr.Inflocculation
zonemax.flocisformedandafterremovingit,theclearwatermovesintoclarifier.
Someimpuritiesareweightlessanddonotsettledownsotheyarepassedthroughfilter
beds.Therearetwotypesoffilterbeds.
1. Gravityfilterbed.
2. Forcedfilterbed.
InFORCEDFILTERBEDSraisinsareaddedtosettledownthe
impurities.InGRAVITYFILTERBEDSgradedgravelsarearranged.Atbottom
gravelsofbigsizearethereandaboveothergravelsarearrangedaccordingtosize.
Aboveitgritandmostoftheaboveissand.
Theclarifiedwaterentersintosump.Sumpisfullyclosedleavingone
windowtoseethelevel.Sinceitisfullyclosedhencenoforeignmattercanenterintoit.
3.2DEMINERALIZING PLANT
Waterismainlyusedforcoolingpurposeofdifferentpartslikebearingwindingetc.
inKaTPP.ForthiswatershouldbeDemineralized(D.M.water).
Inthisplantprocesswaterisfreedfromalldissolvedsalts.Equipmentsfor
demineralizationplantissuppliedanderectedbyGEINDUSTRIAL(India)Ltd..This
plantconsistsoftwostreams,eachstreamwithactivatedcarbonfilter,weakacid,carbon
exchangerandmixedbedexchanger.ThefilterwatergoestoDMwaterplantthrough
250diaheaderfromwhereaheadertopoffhasbeentakenofftosofteningplant.Two
filteredwaterboosterpumpsareprovidedonfilteredwaterlineformeetingthepressure
requirementinDMplant.
Whenpressuredropacrossfilterexceedsaprescribedlimitfromtheactivated
carbonfilterenterworksacidcarbonunit.Thedilationwaterentertheweakbaseanion
exchangerunitwaterthenentersdegassifierunitwherefreeCO2isscrubbedoutofwater
byupwardcounterflowoflowpressureairflowthroughdegassifierloweranddegassed
waterispumpedtostrongbaseexchanger(anion–exchanger).
Arrangementfordesigningammoniasolutionintodematerializedwateraftermixedbed
unithasbeenprovidedforpHcorrectionbeforewateristakenintothecondensate

36
transferpumptheDMwatertounitcondenserasmakeup.Thesofteningplantisaplant
designedtoproduce100cubicm/hr.ofsoftenedwaterperstream.Itisusingforbearing
cooling.
PHVALUEOFWATER:-
Thisisrecommendedtofeedthewaterintheboilerat25degree
centigradeandpHvalueis8.2to9.2upto28daysandthepressureis59Kg\cm
2
.
3.3COOLINGTOWER
Itisusedtorejectheatintotheatmosphere.Therearetwotypesofthecoolingtower.
(1)Naturaldraft
(2)Forceddraft
Naturaldrafttowerusedvarylargeconcretechimneytointroduceair
throughthemedia.Theyaregenerallyusedforwaterflowrateabout45000m
3
/hour.It
isusedinutilitypowerstation.Herehightofcoolingtoweris202M.
Forceddrafttowerutilizelargefanstoforceorsuckairthrough
circulatingwater.Thewaterfallsdownwardoverfillssurfacewhichhelpsinincreasethe
contacttimebetweenthewaterandair.Thisheldmaximizeheattransferbetweentwo
media.Coolingratesdependuponfandiameterandspeed.Thistypeoftowermuch
widerused.
Here2NDCTusedeachoftwounitsandhightofcoolingtoweris202
meter.watertubesareusedinsideofcoolingtowerforcoolingpurpose.
Thisstructureisconstructedinr.c.c.shellpoudflooranditsderifiedwater
channelc.w.Forbay.Theentirestructureissupportedcombinedcircularrafting
constructedindifferentsegmentswithslantedcolomnfottingtosupport17mhight
circularsectionalreckarcolmns.Thisr.c.c.shellof150mdia.And205mheight.Itis
madeofm50grader.c.c.Whichwasalsodoneatsight.Therewillbe200colomnspoud
floorsthatwillgeneratecascadingeffectforcooling.
Thecoolingtowershellbecapableofcoolingtheratedqualityofwater

37
throughthespecifiedthermalrangeatthedesignwetbulbtemperature.
Minimumgradeofconcretetobeusedforallthestructureelementsas:
Structure minimumgrade
Foundations M30
Basin M35
Diagonalcolomn M40
Shell M35
Precastwork M35
Foundations:
Thedesignandconstructionofcoolingtowerfoundationsshellbeinaccordancewiththe
requirmentscontinuousfoundationsshellbeprovidedforcoolingtowermorethen75m
height.Thefoundationisdesignforloadisindicatedinasfollows:-
A.)Thermallyinducedlocalloading
B.)Coldwaterbasinfloorloading
C.)Surfacechargeloadof15KNper50m
Thebasinfloorateachcompartmentshouldbeslopedtowardsacollectingsumpfor
effectivelydrainagethewatertopermittdesilting.Tominimizetheobstructioninflow
ofwateronlythecolomnssupportingthefillstructureshellbeprojectedabovethebasin
floors.
BEARINGCOOLINGWATER
Waterfromrivercomesinplantheatexchanger,whereitstemperature
coolsdownandthatgoesinAHPtomakeslurry.Thereare480plates’exchangers.BCW
requirementsofboilerandturbineauxiliariesofboththeunitsismeetfromBCWsoft
wateroverheadtankwiththecapacityof2000cubicmeter

38
FIG-10COOLINGTOWER

39
DEAERATOR:-
DEAREATION OFFEEDWATER:-
Indeareationdissolvegasessuchasoxygen&CO2areexpelledby
preheatingthefeedwaterbeforeitenterstheboiler.Allnaturalwatercontainsdissolve
gasesinsolution(i.e.oxygen+CO2)arereleasedwhenwaterheated.
CONDENSER:-
Incondensersteamchangesintowater.Thebasicrequirementisto
removelatentheatfromthesteamwhichisremovedbyanotherwater(clarifiedwater)
whenitacceptsthelatentheatandbecomeshot,thanitispassedtocoolingtower.In
coolingtowerthewateriscooledandthenmixwithriverwater.
PUMPS:-
Theentiregreencoloredinstrumentispumpswhichare18inno.tofurtherpassthewater.
1.FILTERWATERTRANSFERPUMP:-
Itissoftsectionconsistingtwotypes:-
BEARINGCOOLINGWATERPUMP:-
Allthebearingtemperatureiscontrolledthroughoilbathandfilter
waterisused.Oilisusedtocoolthesuppliedwater.Heredoesn’tusedrawwater
becauseatthetimeofpunctureitentersinthemachinerypartandsmallimpuritymay
stoptheoperation.
CONDENSATE WATERPUMP:-
Thispumpiscoupledwithbluecoloredmotor.Inordertocoupleitwith
motoralittleopeningisleftthroughwhichwaterleaksoutwhenpumped
2.FILTERWATERTRANSFERPUMP:-
ThispumptransferswatertoD.M.plant.ThesepumpsareinD.M.
section.
3.POTABLEWATERPUMP:-Thesepumppumpsclearwaterforpotable
purposeforwholeplant.

40
3.4H2GENERATING PLANT
Hydrogengasisusedforcoolingpurposeforrotorofthegenerator.For
coolingpurposewehavetouse99.9%purehydrogen.Toavoidfiresowehavetoapply
Hydrogencooling.ItisverydifficulttogenerateandstoretheHydrogengasbecauseit
isveryexplosive.Hydrogenasacoolanthasthefollowingadvantagesoverair:
1.Moreefficiencyandlessnoise.
2.BetterCooling.
3.Morelifeandlessmaintenance.
4.Lesschanceoffirehazard.
5.Betterrating.
GENERATING PLANT:-
HydrogengasisproducedbyelectrolyticdialysisbymixingKOHinD.M.water.
ThisreactionisdoneinelectrolyserwhereAnodeandCathodeareapplied.Anodeplate
isusedforcollectingH2andCathodeplateisusedforcollectingO2.Forelectrolytic
dialysis3000Amperecurrentispassedintoelectrolyser.O2isreleasedtoatmosphere
andH2issenttonextmachineryforfurthertreatment.
COLLECTING PROCESS:-
H2Gasfromelectrolyser→Refrigeratorforcooling→Separatortoseparatethe
moisture→Compressor→Catalyticpurifier→Dryer(Al2O3)→H2cylinder.In
compressorH2istreatinginthreestepswherepressureisraisedupto130Kg/cm
2
.In
dryerAluminaisusedtoabsorbmoisture.
CAPACITY:-
InKaTPPthefulldaycapacityofH2generatingisNotcalculatedbecauseplant
isinonconstraction.itsappxi40cylindersperday.Butinplantperdayutilizationare
of15cylinders.Percylindercapacityis200-250kgandstoredH2is99.8%pure.

41
CHAPTER-04STGSYSTEM
4.1BOILER
BoilercansimplydefinedasthedevicewhereanyliquidisboiledorBoiler
maybedefinedasadevicethatisusedtotransferheatenergybeingproducedbyburning
offueltoliquid,generallywater,contendedinittocauseitsvaporization.Boiler,in
simpleterms,canbecalled“SteamGenerator”.Thefollowingarefactorsessentialforthe
efficientcombustionusuallyreferredas“ThethreeT’s”.
A)TIME–Itwilltakeadefinitetimetoheatthefueltoitsignitiontemperatureand
havingignited,itwillalsotaketimetoburn.
B)TEMPERATURE –Afuelwillnotburnuntilitreachesitsignitiontemperature.
C)TURBULENCE –Turbulenceisintroducedtoachievearapidrelativemotion
betweentheairandfuelparticles.
CLASSIFICATION:
Boilersmaybeclassifiedunderdifferentheadsondifferentbasis:-
1.Dependingupon“Use”
1.1.Stationary(land)boilers
1.2.Mobileboilers
1.2.1.Marineboilers
1.2.2.Locomotiveboilers
2.Dependingupon“Tubecontents”
2.1.Firetubeboilers
2.2.Watertubeboilers
3.Dependingupon“Tubeshape”
3.1.Straighttubeboilers

42
3.2.Benttubeboilers
3.3.Sinuoustubeboilers
4.Dependingupon“Tubeposition”
4.1.HorizontalorVertical
4.2.Inclined
5.Dependingupon“Furnaceposition”
5.1.Externallyfired
5.2.Internallyfired
6.Dependingupon“Heatsource”
6.1.Solid,liquidorgas
6.2.Wasteofchemicalprocess
6.3.Electricalenergy
6.4.Nuclearenergy
7.Dependingupon“Circulation”
7.1.Naturalcirculation
7.2.Positiveorforcedcirculation
Aboilerisanenclosedthatprovidesameansforcombustionheattobe
transferintowateruntilitbecomesheatedwaterorsteam.Itsvolumeincreases1600
times.Theprocessofheatingaliquiduntilreachesitsgaseousstatesitscalled
evaporation.Theboilersystemcomprisesof
feedwatersystem
steamsystem
Fuelsystem
1.FeedWatersystem:-
Itprovideswatertotheboilerandregulatefeedaccordingtodemand.
2.Steamsystem:-

43
Itcollectsandcontrolsthesteamproducedintheboilersteamare
directedthroughapipingsystemtoapointofuse.Steampressureisregulatedusing
valvesandcheckedwithpressuregauges.
3.Fuelsystem:-
Fuelsystemincludesallequipmentsusedtoprovidefueltogeneratethe
necessaryheatforhigherboilerefficiencyfeedwaterispreheatedbyeconomizerusing
thewasteheatinthefluegases.
WATERTUBETYPEBOILERUSEDINKaTPPWITH97MHIGHT
Variousmotorsuseinboileraredifferentratingandparameters
32KW,15KW,11KW,&3.3KW
Parameterin15KWmotor
BOILERMOTORDATA
Manufacturing CQ.GEARBOXLTD.CHAINA
Motorrating 15KW
Speed 970rpm
Ratedvoltage 416V
Ratedcurrent 28.4A
Impedancevoltage 80.0%
Oilwaight 20kg
Core+windingwaight 224kg
Totalwaight 600kg
Temprise 50-55degcel.

44
FIG-11FLOWOFWATER&STEAM,FIG-12KaTPPBOILER

45
BOILERAUXILIARIES
Efficiencyofasystemisofmostconcerned.Thusitisveryimportanttomaintaina
systemasefficientaspossible.Boilerauxiliarieshelpinimprovingboiler’sefficiency.
Followingaretheimportantauxiliariesused
ECONOMIZER: Itspurposeistopreheatfeedwaterbeforeitisintroducedintoboiler
drumbyrecoveringheatfromfluegasesleavingthefurnace.
SUPERHEATER:Itincreasesthetemperatureofsteamtosuperheatedregion.
REHEATER:Itisusedforheatadditionandincreasethetemperatureofsteamcoming
fromhighpressureturbineto540o.
SOOTBLOWER:Itblowsofftheashdepositedonthewaterwallsurface.Itusessteam
forblowingpurpose.
AIRPREHEATER:Itpre-heatstheairenteringthefurnacebyrecoveringheatfrom
fluegasesinordertoeasethecombustionprocess.
DRAFTFANS:Theyhandlethesupplyofairandthepressureoffurnace.
OILGUNS:Theyareusedtosprayoiltoraisethetemperatureoffurnacetoignition
temperatureoffuel.
WINDBOX:Itdistributestheexcessairuniformlythroughoutfurnace.
BOILERMOUNTINGS
Theseareusedforthesafeoperationofboiler.Someexamplesofmountingsusedare
waterlevelindicatorindrum,furnacetemperatureprobe,reheatreleasevalve,pressure
gaugesindicatingsteampressureetc.

46
4.2TURBINE
Turbineisanm/cinwhichashaftisrotatedsteadilybytheimpactof
reactionofsteamofworkingsubstanceuponbladesofawheel.Itconvertsthepotential
energyorheatenergyoftheworkingsubstanceintomechanicalenergy.Whenworking
substanceissteamitiscalled‘SteamTurbine’
Inthesteamturbinethepressureofthesteamisutilizedtoovercome
externalresistanceandthedynamicactionofthesteamisnegligiblysmall.
PRINICIPLE:-
Workingofthesteamturbinedependswhollyuponthedynamicaction
ofsteam.thesteamiscausedtofallwithpressureinapassageofnozzle,duetothisfall
inpressure,awholeamountofheatenergyisconvertedintomechanicalenergy&
steamissetmovingwiththereactorvelocity.Therapidlymovingparticleofsteam
enterthemovingpartofturbineandheresuffersachangeinthedirectionofmotion
whichgivesrisetochangeofmomentumandthereforetoaforce.Thisconstitutesa
drivingforcetoamachine.
Thepassageofthem/cthroughthemovingpartoftheturbinecommonly
calledtheblade,maytakeplaceinsuchamannerthatthepressureattheoutletsidesof
thebladeisequaltothatoftheinletside.Suchaturbineisbroadlytermedasoutlet
turbineorImpulsetype
Ontheotherhand,thepressureofthesteamatoutletfromthemoving
blademaybelessthanthatattypeinletsideoftheblade.Thedropofpressuresuffered
bythesteamduringitsflowthroughthemovingbladescausesafurthergenerationof
kineticenergywithinthebladesandaddstothepropellingforcewhichisappliedtothe
turbinerotor,suchaturbineisbroadlytermedasReactionTurbine.Hereinkalisindh
thermalN600-16.7/587/537,Re-Het,ThreeCasingFourExhaust,TandemCompound
CondenserTypeTurbineUsed.

47
TURBINESPECIFICATION:-
Ratedoutputwithextractionflow- 600MW
Speed- 3000rpm
MainsteamthrottleflowatHPInlet-1848.5TPH
MainsteampressuretoHPturbine
inlet-
167kg/sq.-cm.
Mainsteamtemp.toHPturbineinlet-538deg.cel
Re-heatersteamflowatIPinlet- 1587.942TPH
Re-heatersteamtemp.atIPinlet- 538deg.cel
SteampressureatLPinlet- 35.12kg/sq-cm
SteamflowatLPinlet- 1353.7TPH
Rotationdirection(viewfromturbine)-anticlockwise
Numberofstages- 42
Highpressureturbine-
(a)intermediatepressure-
(b)lowpressureturbine-
(c)governingsys
1governing,&8pressure
5pressurestage
2x2x7pressurestage
DEH(digitalelectrohydrolic)
Inletsteamflowgoverningtype- nozzle+throttle
Ratedexhaustpressure– 0.09kg/sq-cm
Typeofbearingsturbine- 6journal+1thrust
Turbineallowablefrequency- 47.5to51.5Hz
Turninggearrotationspeed- 1.5rpm
IstcriticalspeedofHP&LProtor- 1722rpm
IstcriticalspeedofLP-Arotor- 1839rpm
IstcriticalspeedofLP-Brotor- 1903rpm
Heatregenerativeextractionsystem–3HPheater+1deaerator+4LPheater
Finalfeedwatertemp.- 274.9deg.cel.
Maximumbearingvibration- 0.076m
Maximumallowableexhausttemp.-80deg.cel.
Coolingwaterdesignflowat
condenser-
70200TPH

48
FIG-13(1)TURBINEDIAGRAM,FIG-14HP&LPROTOR

49
4.3GENERATOR
FIG-15GENERATOR DIAGRAM
Generatoristhemainpartofthermalpowerstationoranypowerplant.
Ageneratorisamachinewhichconvertsmechanicalenergyintoelectricalenergy.
Thegeneratorhasgascoolingconstructionenclosingthestatorwinding,
coreandhydrogencoolers.Thecoolingmediumhydrogeniscontainedwithintheframe
andcirculationbyfansmountedoneitherendsoftherotor.Thegeneratorisdrivenby
directlycoupledsteamturbineataspeedof3000rpm.
Provisionhasbeenmadeforcirculatingthecoolingwaterinorderto
maintainaconstanttemperatureofthecoolanti.e.H2asmeasuredatthefansectionside
whichisintouchwiththetemperatureofthewinding,coreandotherpartsasperload.
Eachofthe2unitshavebeenprovidedwith3-phaseturbogeneratorrated
output706MVA,18.525KA,22KV,0.85laggingp.f.,984rpmand50cycles/sec.The
generatorhasclosedloopofhydrogengassystemforcoolingofthestatorandrotorata
pressureof4.5kg/sq-cm(g).isfilledinagastightoutercasingofthegenerator.H2gas
circulatesinsidethecasingbytwosinglestagerotormountedfansoneithersideofthe

50
rotor.TheheatedH2isinturncooledbysixsurfacetypewatercoolersaxiallymounted
insidethegeneratorcasing.ThecoolingwaterissuppliedtoH2coolersfromtheBCW
overheadtank.
Eachgeneratorhasterminalledoutofitscasingandastarpointis
formedbysortingtheneutralsideterminalsbyasortingbar.Theneutralisgroundedby
a1-phase11000/220V,Neutralgroundingtransformer,whosesecondarycoilis
laminatedbylaminatedstripwithmechanicalventilatingholes,isconnectedacrossa
650V,class0.4ohm,50kWneutralgroundingresistorsandrelaysforprotectionof
generatoragainststatorearthfaultsandstatorinturnfaults(rating1amp).
TheH2gasinsidethegeneratorcasingispreventedfromleakingin
betweentherotorandshields,byacontinuousoilfilmmaintainedbetweentherotor
andsealingrings.Theshaftsealingsystemhavetwoindependentoilsourcesassociated
pumps,regulators,coolersfilters,electricalcontrolsandalarmsystem.Two
independentoilsourcesareprovidedforairsideandH2sidesealingrings.Theoil
circuitoftheH2sideoftheshaftsealisclosedandtheoilisvacuumtreated.InKaTPP
QFSN-600-2-22Ftypeturbineused.
GENERATOR SPECIFICATIONSFORUNITI&II:-
Make CQGEARBOXchina
Type QFSN
ApparentOutput 706MVA
ActiveOutput 600MW
Powerfactor 0.85lagging
Ratedvoltage 22KV
Ratedcurrent 18525Amp.
Ratedspeed 3000rpm
Frequency 50Hz
Phaseconnections Doublegen.star
Insulationclass F(templimitedinBclass)
Coolingmode H20-H2-H2
RatedH2pressure 4.5kg/sq-cm
Excitationtype staticthyristorexcitation
Terminalingenerator 6

51
FIG-16STEAMOVERVIEW
4.4DIESEL-GENARATOR SET
Itisusedtoemergencyporpusetosupplyauxillarysystemofpowerplant.3Set
Dieselgeneratorareuseinwhich1isstandby.parametersofgeneratorareas
MAKEBY STAMFORDMAHARASTRA INDIA
RATING 1900KVA
SPEED 1500rpm
RATEDCURRENT 2643.37A
RATEDTEMP. 40Degcel
AMPS. 3.6A
EXCITATION
VOLTAGE
63V
VOLTAGE 415V
P.F. 0.8
FREQUENCY 50HZ
PHASE 3
INSULATIONCLASS H

52
CHAPTER-05TRANSFORMER &SWITCHYARD SYSTEM
5.1TRANSFORMER
Transformerismadeupoffollowingparts:-
1.Core
2.Winding
3.Onloadtapchanger
4.Tank
5.Bushing
6.Auxiliaryequipment
7.InsulatingOil
8.Coolingsystem
InKaTPPtherearevarioustransformersforvariouspurposes.Theyare:-
1.GeneratingTransformer(GT)
2.UnitTransformer(UT)
3.UnitAuxiliaryTransformer(UAT)
4.InterConnectingTransformer(ICT)
5.UnitServiceTransformer
6.StationTransformer
GENERATING TRANSFORMER:-
AtKaTPP,3singlephaseGTInstalledforeachphaseinsingleunit.outputofgenerator
hasstepupupto400KVbyGT.InKaTPP150/200/250MVA,22.98/22KV,GTare
used.

53
SPECIFICATIONS:-
MANUFACTURING CROMPTONGREAVESLTDMUMBAI
RATING 250MVA
NOMINALVOLTAGE(NOLOAD) HV-243.37KV
LV-22KV
RATEDCURRENT HV-1031.0A
LV-11363.6A
PHASE 1
FREQUENCY 50HZ
TYPEOFCOOLING
RATING(MAV)
ONAN ONAF OFAF
150 200 250
TEMP. 50degcel
TEMP.RISEINWINDING 50-55degcel
CONNECTIONSYMBOL YND
MASSCORE+WINDING 12.5800kg
OILMASS 58300/66600kg/ltr.
TOTALMASS 251800Kg
NOLOADLOSS 105KW
ONLOADLOSS 483KW@249KVA
COOLINGLOSS 15KW
OLTC (ON LOAD TAP
CHANGER)TAPPING RANG
+7.5%TO-12.5%INSTEPSOF1.25%
ONHVNEUTRALSIDE
HV/LV 1-1/2-2

54
SINGLELINECONNECTION DIAGRAMFOR3xSINGLEPHASEGT
1N 1U1 1V1 1W1
1-2 1-1 1-1 1-1
2U1 2V1 2W1
2-1 2-1 2-1
2-2 2-2

55
FIG-171.GT2.U.T3.UAT

56
UNITTRANSFORMER:-
UnitTransformerareinstalledtofedsupplytoHTswitchgear.therearetwo
80MVATransformerinstallednearGTwhicharefedthrowmainbusductscoming
fromgeneratorandfedtotheHTswitchgear.AfterstepdownTHISSUPPLYUPTO11
KVHTswitchgearusedtosupplyonthemajorauxillaryoftheplantlike
BFP,CWP,ID,FD,PAfensetc.TheunittransformerisusedtoHTswitchgearandit
supplyvoltage22/11KVtoUATanddifferentmotorsinboiler.UTisratedfor
48/64/80MVA,22/11.6/11.6KV,Dyn11yn11typewinding.Thispermittovoltage
dowanupto11KV.ithave2radiator.
SPECIFICATIONS:-
Manufactured BHARATBIJLEELTD.MUMBAI
Totalno.provided 2
Typeofconstruction CORE
Ratedoutput 48/64/80MVA
Ratedvoltageatnoload 22/11.6/11.6KV
PhaseHV/LV1/LV2 3
Frequencycy 50Hz
OilTemp.Rise 50degcel
WindingTemp.Rise 50-55degcel
Connectionsymbol Dyn11yn11
Insulationlevel p.f/impulse
HV 50KV(rms)/125KVp
LV1-LV2 28KV(rms)/75KVp
LVN1-LVN2 28KV(rms)/75KVp
Winding+coremass 47500kg
Mass/volumeofoil 23300/27100kg/ltr
Totalmass 107000kg

57
SINGLELINEDIAGRAM
LV1
2N1S2 2 2 2
CORE1
2N1S1
1 1 1
2N2S2 2V1S2
CORE2 WTICT
2N2S2 2V1S1
NCR 2N2 2U1 2V1 2W1
LV2
2N1S11 2 2 2
CORE1
2N1S12
1 1
2N2S21 2V1S22
CORE2 WTICT
2N2S22 2V1S11
NCR 2N2 2U2 2V2 2W2
1U 1V
1W
1U1S1 1V1S1
1W1S1
CORE1 CORE1
CORE1
1U1S2 1V1S2
1W1S2
1U2S1 1V2S1
1W2S1
CORE2 CORE2
CORE2
1U2S2 1V2S2
1W2S2
1U2S1 1V3S1
1W3S1
CORE3 CORE3
CORE3
1U3S2 1V3S2
1W3S2
1V1S1
WTICT
1V1S2

58
UNITAUXILLIARYTRANSFORMER:-
ThereisonemoreTransformerknownasStationTransformerusedonlyforinitializing
thestart-upofthestation(MainPlant).Itisverybeneficialduringemergencysituations
suchastrippingofUnits,shut-downetc.
InKaTPP2UATusedforstepdownvoltage11/3..3KVsupply
usedtoswitchgearequipments.
INSTRUMENT TRANSFORMER:-
Instrumenttransformerhavewiderangeinapplicationsuchas
measurementofvoltage,current,power&energypowerfactor,frequency.Itisalso
usedforprotectioncircuitofthepowersystemforoperationofovercurrent,under
voltage,earthfaultandothertypeofrelays,Theinstrumenttransformercanbe
classifiedas
(A).CURRENTTRANSFORMER:-
Currenttransformerisusedformonitoringthecurrentforthepurposeof
measuringandprotection.Thedeadtankcurrenttransformeraccommodatethe
secondarycoresinsidethetankwhichisatgroundpotential.CTusedcurrentratio
1000:1andrangeis1A-5A.
(B).POTENTIALTRANSFORMER:-
ThefunctionofP.T.istostepdownthevoltagesothatitcanbe
measuredbystandardmeasurement.Outputinptis110V.Thetransformerisgenerally
coretypeandformY-Ygroupandhavingtheinsulationasoilandpapers.

59
CHAPTER-06,ESP&ASPSYSTEM
6.1ELECTROSTATICPRECIPITATOR
Ifsuspendedparticlesarenotremovedfromtheflueglass,anditisallowed
tobereleasedinenvironment,thenitwouldcauseaseriousthreattotheenvironment,so
itbecomesnecessarytoextractsuspendedparticlesfromtheflueglassandforthis
purposeESPiswidelyused.Precipitationofashhasanotheradvantagetoo.Itprotects
thewearanderosionofIDfan.Toachievetheaboveobjectives,ElectrostaticPrecipitator
(ESP)isused.Astheyareefficientinprecipitatingparticleformsubmicrontolargesize
theyarepreferredtomechanicalprecipitation.
WORKINGPRINCIPLE:-
Anelectrostaticprecipitatorisdefinedasadevicewhichutilizes
electricalforcestoseparatesuspendedparticles.Theelectrostaticprecipitatorconsists
oftwosetsofelectrodes,oneinformofthinwirecalled“dischargeoremitting
electrode”andothersetiscalled“collectingelectrode”inthereformofplateESP
POWERSUPPLYCOMPONENT .
CONSTRUCTION:-
ThemainpartsofESPareasfollows:-
Casing
Hoppers
Collectingsystem
Emittingsystem
Rappingmechanismforcollectingsystem
Rappingmechanismforemittingsystem

60
Insulatorhousing
CASING:-
Itisdesignedforhorizontalgasflowtoprovideforheatexpansion,thecasingis
supportedbyrollerbearingsupport.
HOPPERS:-
Theyareofpyramidalshape.AnglebetweenhoppercornerandHzisneverlessthan55
degree.
COLLECTOR SYSTEM:-
Theprofiledcollectingelectrodeisbasedontheconceptofdimensionedelectrode
stability.Theupperplateshavehooksandloweredgehasareceivingplate.
EMITTINGSYSTEM:-
Theframeworkisthoroughlybracedandformsarigidboxlikestructure,theemitted
electrodeismadeofhardstainlesssteelwires.
RAPPINGMECHANISM FORCOLLECTING SYSTEM:-
ThesystememploysfumblinghammerwhicharemountedonanHz.Shaftina
staggeredfashion.Auniformrappingeffectisprovidedforallcollectingplatesinone
row.Rappingfrequencyisverylowtominimizethedustloss.Thehammersare
operatedbymotor,sothattheystriketheplateatfixedfrequency.

61
6.2ASHHANDLINGPLANT(A.H.P)
TheashproducedonthecombustionofcoaliscollectedbyESP.Thisashisnow
requiredtobedisposedoff.ThispurposeofashdisposalissolvedbyAshHandlingPlant
(AHP).Therearebasically2typesofashhandlingprocessesundertakenbyAHP:
·Dryashsystem
·Ashslurrysystem
DRYASHSYSTEM
Dryashisrequiredincementfactoriesasitcanbedirectlyaddedtocement.Hencethe
dryashcollectedintheESPhopperisdirectlydisposedtosilosusingpressurepumps.
Thedryashfromthesesilosistransportedtotherequireddestination.
ASHSLURRYSYSTEM
Ashfromboileristransportedtoashdumpareasbymeansofsluicingtypehydraulic
systemwhichconsistsoftwotypesofsystems:
Bottomashsystem
Ashwatersystem
BOTTOMASHSYSTEM
Inthissystem,theashslagdischargedfromthefurnaceiscollectedinwaterimpounded
scraperinstalledbelowbottomashhopper.Theashcollectedistransportedtoclinkersby
chainconveyors.Theclinkergrinderschurnashwhichisthenmixedwithwatertoform
slurry.
ASHWATERSYSTEM-
Inthissystem,theashcollectedinESPhopperispassedtoflushingsystem.Herelow
pressurewaterisappliedthroughnozzledirectingtangentiallytothesectionofpipeto
createturbulenceandpropermixingofashwithwatertoformslurry.Slurryformedin
aboveprocessesistransportedtoashslurrysump.Hereextrawaterisaddedtoslurryif
requiredandthenispumpedtothedumparea.
FLYASHSYSTEM

62
EventhoughESPisveryefficient,thereisstillsomeash,about0.2%,leftinfluegases.It
isdisposedtotheatmospherealongwithfluegasesthroughchimney.
FIG-18ASHHANDLINGSYSTEM

63
CHAPTER-07,SWITCHYARD ,C&ISYSTEM
7.1SWITCHYARD
SwitchyardisconsideredastheHEARTofthePowerPlant.Power
generatedcanbeworthfulonlyifitissuccessfullytransmittedandreceivedbyits
consumers.Switchyardplaysaveryimportantroleasabufferbetweenthegeneration
andtransmission.Itisajunction,whichcarriesthegeneratedpowertoitsdestination(i.e.
consumers).Switchyardisbasicallyayardoranopenareawheremanydifferentkindsof
equipmentsarelocated(isolator,circuitbreakeretc…),responsibleforconnecting&
disconnectingthetransmissionlineasperrequirement(e.g.anyfaultcondition).Power
transmissionisdoneatahighervoltage.(Highertransmissionvoltagereduces
transmissionlosses).
Bothunitsis22KVinKaTPP.stepped-upto400KVbytheGeneratingtransformer&
thentransmittedtoswitchyard.Switchyardscanbeof400KV,&200KVInSSTPSthere
aretwointerconnectedswitchyards:-
(i)400KVSWITCHYARD
(ii)220KVSWITCHYARD
The400KV&220KVswitchyardhaveconventionaltwobusesarrangementwithabus
coupledbreaker.Boththegeneratortransformerandlinefeedertakingofffromswitch
yardcanbetakentoanyofthetwobuses,similarlytwostationtransformercanbefed
fromanytwobuses.Eachoftheselinefeedershasbeenprovidedwithbypassisolators
connectedacrosslineisolatorsandbreakerisolatorstofacilitatethemaintenanceofline
breaker.Each400KV&220KVlineshaveprovisionoflocalbreakupprotection.In
eventofbreakerwhichcorrespondingtobusbardifferentialprotectionschemeandtrips
outallthebreakersandconnectedzonebusbarsdifferentialprotectionschemeforbusI
&II.Allthebreakeroftheconnectedzoneandbuscoupler,breakerwilltripineventof
faultinthatzone.HereinKaTPP4outgoinglineareasbelow:-
1.400KVTOBTAWDA
2.400KVTOBTAWDA

64
3.220KVTOJHALAWAR
4.220KVTOJHALAWAR
EachofthetwobusbarshasoneP.T.oneforeachphaseconnectedtoit.Potential
TransformeraremakeinCROMPTONLTD.Eachtimelinefeedershastwonos.Core
foreachphasecapacitorvoltageTransformer.formeteringandprotectionare
multicoredsinglephase,oilfilled,nitrogensealedandareprovidedatrateofoneper
phase.
-
FIG-19SWITCHYARD

65
400KVSWITCHYARD :
Thereareontotal21baysinthisswitchyard.
(Abayisbasicallyawayfortheincomingpowerfromgeneratoraswellasoutgoing
powerfordistribution).
3forunitGeneratingTransformer.
2forvariousdistributionlinessuchas:
BTAWDALINE
2forBuscoupler.
2forTBC.
2forICT.
1fortheBusSection.
Thereareontotal2busesin400KVswitchyard.
Bus-1
Bus-2
Therearetwotransferbuses:
Transferbus-1
Transferbus-2
Transferbusesarekeptspareandremainidleandareusedonlyforemergencypurposes.
BUSCOUPLER-1interconnectsBus-1&Bus-2,respectively.Buscouplersarevery
beneficialastheyhelpinloadsharingbetweenthedifferentbuses.
TBC(TRANSFERBUSCOUPLER):
TBCisabuscoupler,whichusestransferbuswhenthereisanydefectintheequipments
used(circuitbreakers&isolators)inanyofthebay.Thus,itoffersaclosedpaththrough
transferbusfortheflowofpowerintherespectivebus.
Adescribedofelectricalequipmentat400KV&220KVsystemareasfollows:-
CircuitBreaker(VCB&SF6)
Isolators
 CurrentTransformers(C.T.)
PotentialTransformers(P.T.)
LightingArresters

66
EarthingArresters
CapacitorVoltageTransformers(C.V.T.)
Interconnectedtransformer(ICT)
CIRCUITBREAKER:-
FIG-20CIRCUITBREAKER
Itisanautomaticcontrollingswitchusedinpowerhouse,substation&workshopaswell
asinpowertransmissionduringanyunwantedcondition(anyfaultcondition-earthfault,
over-current,flashover,singlephasing,).Duringsuchconditionitcutsdownthesupply
automaticallybyelectromagneticactionorthermalaction.Itcanbeusedinoff-loadas
wellason-loadcondition.Whenacircuitbreakerisoperatedbysendinganimpulse

67
throughrelay,C.B.contactismadeorbrokenaccordingly.Duringthismakingand
breaking,anarcisproducedwhichhastobequenched;thisisdonebyair,oil,SF6gas
etc….
DependingonthemediumbeingusedC.B.scanbecategorizedintovarious
types.PLANTfor400KV/220KVswitchyardonly4maintypesarebeingused:-
ABCB(Airoperatedcircuitbreaker):-operatedaswellasarcquenchedthroughair.
AiroperatedSF6circuitbreaker:-operatedthroughairbutarcquenchingdone
throughSF6gas.
MOCB(Minimumoilcircuitbreaker):-operatedthroughspringactionbutarc
quenchingdonethroughoil(Aerosolfluidoil).
HydraulicoperatedSF6circuitbreaker:-operatedthroughhydraulicoilandarc
quenchingdonethroughSF6gas.HydraulicoperatedSF6circuitbreakeristhemost
efficientduetofollowingreasons:-
1.Lessmaintenance.
2.ArcquenchingcapabilityofSF6gasismoreeffectivethanair.
3.HeattransfercapacityisbetterinthisC.B.
HereweuseSF6providedforeachstageareSIEMENSmadeandratedfor
420KV/245KV,3150AEachpolehasthreeinterrupterswhichareoilfilledwithSF6gas
at7.5Kg/sq.cm.HereinKaTPP3AP1FI/3AP2FItypeCBareusedfor400KV&220KV
Switchyard.
InterlockSchemeofCircuitBreaker:-
GeneratorBreaker
StationTransformerBreaker
LineFeederBreaker
BusCouplerBreaker.
PARAMETERS FORCB
Parameters 400KVyardFor220KVyard
Type 3AP2FI 3AP1FI
Ratedvoltage 420KV 245KV
Ratedlightingimpulsewithstand
voltage
1425KVp 1050KVp

68
Ratedpowerfrequencywithstand
voltage
610KV 460KV
Frequency 50Hz 50Hz
Ratednominalcurrent 3150A 3150A
Ratedshortcircuitbreakingcurrent 50KA 40KA
Ratedshortcircuittimeduration 3sec 3sec
Ratedoutofphasebreakingcurrent 12.5A 10KA
Firstpoletoclearfactor 1.3 1.3
Ratedsinglecapacitorbankbreak
current
400A 125A
Ratedlinechargingbreakcurrent 600A 400A
DCcomponent 46% 25%
Ratedoperationsequence o-.3s-co- 0-.3S-CO-3M-CO
RatedpressureofSF6at+20degcel 3min-c0
WeightofSF6 6.0barrel 6.0barrel
Totalweight 39kg 22kg
Controlvoltage 5400kg 3000kg
Operationmachnisiom/heatingvoltage220VDC
240VAC
220VDC
240VAC
ISOLATERS:-
Anisolatorisalsoaswitchingdeviceusedtodisconnecttheline.Asthe
namesuggestsitisolatethelinefromthesupply.ItisalwaysusedinOFF-LOAD
condition.Wheneveranyfaultoccursintheequipmentspresentintheline,inorderto
removethefaultorreplacethedevicefirstofallsupplyisdisconnected.Butevenafter
thedisconnectionofthesupply,thelineremainsinchargedmodesobeforeworkingon
thedevice(toremovefault)isolatorshouldbemadeopen.Dependingonthestructure
therearemainlytwotypesofisolators:-
Pentagraphisolator.
Centre-breakisolator(alsoknownasSequentialisolator).

69
PentagraphisgenerallyusedinbuseswhereasCentre-break(Sequential)isusedinline.
Isolatorsmaybeoperatedinair(pneumatic),electricallyorevenmanually.
InKaTPPM.O.M/ISOLATORusefor400/220KVitsvariousparametersareas
Type VB
Manufacturingby GR-powerswitchgearltdHyderabad
Ratedvoltage 420/245KV
Rating 400/200A
Impulsevoltage 1050KVp
Totalweight 1300/950kg
Shorttimecurrent 40KAfor3sec
Controlvoltage 220VDC
LIGHTENINGARRESTER:-
Itisaprotectivedevice,whichprotectsthecostlyequipmentssuchas
overheadlines,polesortowers,transformeretc.againstlightening.Asthenamesuggests
itarreststhelighteningofveryhighvoltage(croresofKV)anddumpitintotheground.
Itworksontheprincipleofeasypathfortheflowofcurrent.L.A.isconnectedin
parallelwiththelinewithitslowerendconnectedandtheupperendprojectedabovethe
poleoftower.
LIGHTENINGMOST:
Itispresentatthehighestpoint,atthetopmosttoweroftheswitchyardandisconnected
togetherbywiresformingaweb.Thereasonforitspresenceatthetopmostpointisto
graspthelighteningbeforeitcancome,fallanddamagethecostlyequipmentspresentin
theswitchyard.
FI
G-21LIGHTINGARRESTER

70
SPECIFICATIONSOFLIGHTENINGARRESTER:-
Type A
MaximumVoltage 245KV
MAXCurrent 2000A
RELAYMaximumCurrent 40A
Rating 165KW
Totalweight 215kg
EARTHINGISOLATORS:-
Theterm‘Earthing’meansconnectingofthenon-currentcarryingparts
oftheelectricalequipmentortheneutralpointofthesupplysystemtothegeneralmass
ofearthinsuchamannerthatalltimesanimmediatedischargeofelectricalenergy
takesplacewithoutdanger.AnEarthingisolatorisalargevalueofcapacitance.This
canbechargeduptolinevoltage.Earthingisolatorisusedtodischargetheline
capacitanceandworkonit.
WAVETRAPER:-
Itisanequipmentusedtotrapthehighcarrierfrequencyof500KHzandaboveand
allowtheflowofpowerfrequency(50Hz).Highfrequenciesalsogetgenerateddueto
capacitancetoearthinlongtransmissionlines.Thebasicprincipleofwavetrapisthatit
haslowinductance(2Henry)&negligibleresistance,thusitoffershighimpedance
tocarrierfrequencywhereasverylowimpedancetopowerfrequencyhenceallowingitto
flowinthestation.
FIG-22WAVETRAPER

71
CURRENTTRANSFORMER :
FIG-23CURRENTTRANSFORMER
ThisTransformerisusedforbasicallytwomajorfunctions:-
Meteringwhichmeanscurrentmeasurement.
Protectionsuchasovercurrentprotection,overloadearthfaultprotection,Bus-bar
protection,Busdifferentialprotection.
NOTE:-SecondaryoftheC.Tshouldbekeptshortedbecause(whensecondaryiskept
open)eventhepresenceofaverysmallvoltageintheprimaryofC.Twillprovetobe
harmfulasitwillstartworkingasastep-upTransformer&willincreasethevoltageto
suchahighvaluethatprimarywouldnotbeabletobearit&willgetburned.
CTusedcurrentratio1000:1andrangeis1A-5A.CTconnectedinserieswhilePTin
parallel.
SPECIFICATIONS:for220kvswitchyard
Type 10SK-245/460/1050
Ratedvoltage 245KV
Frequency 50Hz
Current 40KAfor3sec
Ratedprimarycurrent 2000A
Continuoscurrent 2400A
Insulationclass A
Secondaryterminalrating 2A
Oilweight 210kg
Totalweight 850kg

72
PIPRILINE:
Inthecaseofemergency,e.g.totalgridfailurewetakethepowerfromPiprilineforthe
initialstartingofthestation(MainPlant).
CAPACITORVOLTAGETRANSFORMER(CVT)
FIG-24CVT
ThisTransformerperformsmainlytwomajorfunctions:-
Usedforvoltagemeasurement.Thehighvoltageof400KVisimpossibletomeasure
directly.HenceaC.V.Tisused,(connectedinparallelwiththeline)whichstep-downs
thevoltageof400KVto110KV,comparativelyeasytomeasure.
TheothermostimportantfunctionofC.V.Tisthatitblockspowerfrequencyof50Hz
andallowstheflowofcarrierfrequencyforcommunication.Eachofthefourlinefeeders
providedwiththreecapacitorvolttransformerformeteringandsynchronizing.
P.T(POTENTIALTRANSFORMER):
ThisTransformerisconnectedinparallelwiththelinewithoneendearthed.Itisonly
usedforvoltagemeasurementbystepping-downthevoltagetotherequiredmeasurable
value.
SPECIFICATIONS:
PARAMETERS
Type
FOR400KV
CVE/420/1425/50
FOR220KV
CVE/245/1050/40
HV 420KV 245KV

73
Frequency 50Hz 50Hz
Insulationlevel 440kv/1425KVp 440KV/1050KVp
Voltagefactor 1.2CONT/15-30SEC 1.2CONT/15-30SEC
Equilantcapacitor 4400+_10%,-5%P.F 4400+_10%,-5%P.F
PrimarycapacitorC1 4885PFNOMINAL 4885PFNOMINAL
SecondarycapacitoeC2 4455PF 4455PF
Totalburden/class 100VA/0.2 100VA/0.2
Thermalburden 300VA 300VA
Capacitoroilmass 50+_10%kg 50+_10%kg
Equipmentoilmass 95+_10%kg 95+_10%kg
Totalweight 625+_10%kg 625+_10%kg
NOMINATIONOFCVT
A-NHF 1a1-1n2a1-2n3a1-3n
1a2-1n2a2-2n3a2-3n
22.98KV63.32V63.32V63.32V
A
HVTERMINAL
C1 PRIMARYCAPACITOR
C2 SECONDARYCAPACITOR
NHF HFTERMINAL
L COMPENSATING CHOKE
N NEUTRAL
F1-F6 HRCFUSE
E EARTHSCREENBETWEENLV&HV
Zd DAMPINGDEVICE
V VARISTOR
D DRAINOIL
S SURGEARRESTER

74
SINGLELINEDIAGRAMOFCAPACITORVOLTAGETRANSFORMER
C1 L
F1 1a1
C2
F2 1a2
Tr
NHF 1n
F3 2a1
F4 2a2
2n
D S Es
F5 3a1
F6 3a2
N
3n E Zd
V

75
INTERCONNECTED TRANSFORMER(ICT)
PurposeofICTissimplyinterconnectionbetween400KVand220KV
Switchyard.3xM1802-300/D-10.19.300MA2Typeautotransformerisused.manufactur
byCROMPTONGEARVESTRANSFORMER DIVISIONBHOPAL.PARAMETERS
USEINICT:
Rating 315MVA,400/220/33KV
Noload HV400KV
Amperes LV220KV
ONAN/ONAF/OFAF HV272.8/363.7/454.6
LV496.0/661.31/826.7
TV1102/1470/1837.
Phase 3
Frequency 50Hz
Rating(MVA) ONANONAFODAF
HV 189 252 315
LV 189 252 315
TV 63 84 109
Guaranted
temp.winding&oil
50degcel
Connectionsymbol YNaod11
Core+windingmass 120700kg
Totaloil 71600/81800kg/ltr.
Totalmass 287000kg
Noload&onload
loss&auxilloss
100KW&600KW,15KW
Impedencetolerance Hv-lv12.55,hv-tv45%,tv-lv30%

76

77
FIG-25ICT2MOISTURESENSER3.CONTROLBOX4BUCHOLRELAY5NEUTRALCT6THREEPHASE
CONNECTION
3.2.2SINGLELINEDIAGRAMOFINTERCONNECTED TRANSFORMER(ICT)
TAPCHANGERAUTOTRANSFORMER FORHV/LV/TV
N 1U1 2U1 1V1 2V1 1W1 2W1
P2 P2 P2 P2
N2S1 1U11S1 1V12S1 1W11S1
CORE2 CORE1 CORE1 CORE1
N2S2 1U11S2 1V12S2 1W11S2
1V12S3
CORE2
1V12S4
N1S1 1V11S2
CORE1 WTICT/RTD/CT
N1S2 1V11S1
K K K
-12 +4 -12 +4 -12 +4
HV/LV
2.1 2.1 2.1
2U12S1
CORE2
2U12S2
2U12S3
CORE2
2U12S4
2U11S2 2V11S2 2W11S2
WTICT/RTD/CT CORE2 CORE2
2U11S1 2V11S1 2W11S1
2 2 2
3U1 3V1 3W1
3U11S1 3V11S1
WTICT/RTD/CT CORE
TV 3U11S2 3V11S2
3U11S3
CORE
3U11S4
1 1 1
2 2 2

78
3.3SINGLELINEDIAGRAMFORLINESOUTGOINGFROMKaTPP
SWITCHYARD
400KVLINE-03,DAHRA(NEARANTA,DIST-BARAN)(BAY-12)
BUS1
BUS2
89-12-01 89-12-01 89-12-02 89-12-02
ISOOPEN ISOCLOSE ISOOPEN ISOCLOSE
ISO ISO
GRND GRND
CBOPEN CBCLOSE CBOPEN CBCLOSE
CB CB
GRND GRND
89-12-03 89-12-03 89-12-04 89-12-04
ISPOPEN ISOCLOSE ISOOPEN ISOCLOSE
ISO ISO
89-12-0689-12-06CBOPENCBCLOSE89-12-0589-12-05
ISOOPENISOCLOSE ISOOPENISOCLOSE
ACSUPPLY ACSUPPLY
REALY REALY
ISO CB ISO
GRND GRND
89-12-07 89-12-07 89-12-08 89-12-0
ISOOPEN ISOCLOSE ISOOPEN ISOCLOSE
ISO ISO
GRNDGRND
DAHRALINE-03(BAY-12) GT(GENERATION TRANSFORMER)-2 (BAY-14)

79
400KVLINE-01,BTAWDA(BAY-05)
BUS1
BUS2
89-05-01 89-05-01 89-05-02 89-05-02
ISOOPEN ISOCLOSE ISOOPEN ISOCLOSE
ISO ISO
GRND GRND
CBOPEN CBCLOSE CBOPEN CBCLOSE
CB CB
GRND GRND
89-05-03 89-05-03 89-05-04 89-05-04
ISPOPEN ISOCLOSE ISOOPEN ISOCLOSE
ISO ISO
89-05-0689-05-06CBOPENCBCLOSE89-05-0589-05-05
ISOOPENISOCLOSE ISOOPENISOCLOSE
ISO
ISO CB ISO
CB GRND GRND
89-05-07 89-05-07 89-05-08 89-05-08
ISOOPEN ISOCLOSE ISOOPEN ISOCLOSE
ISO
ISO ISO
GRNDGRND
REACTOR
GT(GENERATION TRANSFORMER)-1(BAY-07)
REACTORBAY-04
BTAWDALINE-01(BAY-05)

80
400KVLINE-02,BTAWDA(BAY-09)
BUS1
BUS2
89-09-01 89-09-01 89-09-02 89-09-02
ISOOPEN ISOCLOSE ISOOPEN ISOCLOSE
ISO ISO
GRND GRND
CBOPEN CBCLOSE CBOPEN CBCLOSE
CB CB
GRND GRND
89-09-03 89-09-03 89-09-04 89-09-04
ISPOPEN ISOCLOSE ISOOPEN ISOCLOSE
ISO ISO
89-09-0689-09-06CBOPENCBCLOSE89-09-0589-09-05
ISOOPENISOCLOSE ISOOPENISOCLOSE
CB ISO CB ISO
GRND GRND
89-09-07 89-09-07 89-09-08 89-09-08
ISOOPEN ISOCLOSE ISOOPEN ISOCLOSE
ISO
ISO ISO
GRND GRND
REACTOR
SPAHRELINE-II
REACTORBAY-08
BTAWDALINE-02(BAY-09)

81
400KVSPARELINE,(BAY-01)
BUS1
BUS2
89-01-01 89-01-01 89-01-02 89-01-02
ISOOPEN ISOCLOSE ISOOPEN ISOCLOSE GRND
ISO ISO
GRND GRND
CBOPEN CBCLOSE CBOPEN CBCLOSE
CB CB ISO
GRND GRND
89-01-03 89-01-03 89-01-04 89-01-04 GRND
ISPOPEN ISOCLOSE ISOOPEN ISOCLOSE
ISO ISO
89-01-0689-01-06CBOPENCBCLOSE89-01-0589-01-05
ISOOPENISOCLOSE ISOOPENISOCLOSE
CVTBUS-01
CB ISO CB ISO
GRND GRND
89-01-07 89-01-07 89-01-08 89-01-08
ISOOPEN ISOCLOSE ISOOPEN ISOCLOSE
ISO ISO
GRND GRND
CVTBUS-02
SPAHRELINE,BAY-01
315MVA ICT,BAY-03

82
400KVTIELINE,(BAY-02)
BUS1
BUS2
89-02-01 89-02-01 89-02-02 89-02-02
ISOOPEN ISOCLOSE ISOOPEN ISOCLOSE GRND
ISO ISO
GRND GRND
CBOPEN CBCLOSE CBOPEN CBCLOSE
CB CB ISO
GRND GRND
89-02-03 89-02-03 89-02-04 89-02-04 GRND
ISPOPEN ISOCLOSE ISOOPEN ISOCLOSE
ISO ISO
89-02-0689-02-06CBOPENCBCLOSE89-02-0589-02-05
ISOOPENISOCLOSE ISOOPENISOCLOSE
CVTBUS-01
CB ISO CB ISO
GRND GRND
89-02-07 89-02-07 89-02-08 89-02-08
ISOOPEN ISOCLOSE ISOOPEN ISOCLOSE
ISO ISO
GRND GRND
CVTBUS-02
TIELINE,BAY-02
315MVA ICT,BAY-04

83
400KVICTLINE,(BAY-03)
BUS1
BUS2
89-03-01 89-03-01 89-03-02 89-03-02
ISOOPEN ISOCLOSE ISOOPEN ISOCLOSE GRND
ISO ISO
GRND GRND
CBOPEN CBCLOSE CBOPEN CBCLOSE
CB CB ISO
GRND GRND
89-03-03 89-03-03 89-03-04 89-03-04 GRND
ISPOPEN ISOCLOSE ISOOPEN ISOCLOSE
ISO ISO
89-03-0689-03-06CBOPENCBCLOSE89-03-0589-03-05
ISOOPENISOCLOSE ISOOPENISOCLOSE
CVTBUS-01
CB ISO CB ISO
GRND GRND
89-03-07 89-03-07 89-03-08 89-03-08
ISOOPEN ISOCLOSE ISOOPEN ISOCLOSE
ISO ISO
GRND GRND
CVTBUS-02
ICT,BAY-03
315MVA ICT,BAY-05

84
220KVLINE-01JHALAWAR (BAY-01)
BUS1
BUS2
89-01-01 89-01-01 89-01-02 89-01-02
ISOOPEN ISOCLOSE ISOOPEN ISOCLOSE
ISOLATOR ISOLATOR
GAND GRND
CBLOCAL CBREMOTE CBOPEN CBCLOSECBSPRINGCHARGED
CIRCUITBREAKER
89-01-03 89-01-03
ISOOPEN ISOCLOSE
ISO
GRND
89-01-04 89-01-04
ISOOPEN ISOCLOSE
ISO
TRANSFERBUS
220KVLINE-01
JHALAWAR

85
220KVLINE-02JHALAWAR (BAY-03)
BUS1
BUS2
89-03-01 89-03-01 89-03-02 89-03-02
ISOOPEN ISOCLOSE ISOOPEN ISOCLOSE
ISOLATOR ISOLATOR
GAND GRND
CBLOCAL CBREMOTE CBOPEN CBCLOSECBSPRINGCHARGED
CIRCUITBREAKER
89-03-03 89-03-03
ISOOPEN ISOCLOSE
ISO
GRND
89-03-04 89-03-04
ISOOPEN ISOCLOSE
ISO
TRANSFERBUS
220KVLINE-02
JHALAWAR

86
220KVICT(INTERCONNECTED TRANSFORMER) BAY-02
BUS1
BUS2
89-02-01 89-02-01 89-02-02 89-02-02
ISOOPEN ISOCLOSE ISOOPEN ISOCLOSE
ISOLATOR ISOLATOR
GAND GRND
CBLOCAL CBREMOTE CBOPEN CBCLOSECBSPRINGCHARGED
CIRCUITBREAKER
89-02-03 89-02-03
ISOOPEN ISOCLOSE
ISO
GRND
89-02-04 89-02-04
ISOOPEN ISOCLOSE
ISO
TRANSFERBUS
220KV
LINEICT

87
220KVBUSCOUPLER(BAY-05)
BUS1
BUS2
BUS1CVT
BUS2CVT
89-05-01 89-05-01 89-05-02 89-05-02
ISOOPEN ISOCLOSEISOOPEN ISO
CLOSE
ISO ISO
GRND
GRND
CBLOCALCBREMOTECBOPEN CBCLOSE CBSPRING
CHARGED
CIRCUITBREAKER

88
220KVTRANSFERCOUPLERBAY-04
BUS1
BUS2
89-04-01 89-04-01 89-04-02 89-04-02
ISOOPEN ISOCLOSE ISOOPEN ISOCLOSE
ISO ISO
GRND
CBLOCALCBREMOTECBOPEN CBCLOSECBSPRING
CHARGED
CIRCUITBREAKER
89-04-03 89-04-03
ISOOPEN ISOCLOSE
ISO
TRANSFERBUS

89
7.2CONTROL&INSTRUMENTATION SYSTEM
7.2.1SWITCHGEAR
Theapparatususedforswitching,controllingandprotectingtheelectrical
circuitsandequipmentisknownasswitchgear.
Aswitchgearisonewhichmakesorbreakselectriccircuit.Numerous
problemsariseinerection,testingandcommissioningofswitchgearandvarious
precautionsaretobemadeinoperatingandmaintenanceofswitchgear.
EssentialFeaturesofSwitchGear:-
CompleteReliability
Absolutelycertaindiscrimination
Quickoperation
Provisionformanualcontrol
provisionforinstruments
Themaincomponentsofindoorswitchgeararegivenbelow:-
i.Bus-Bars
ii.IsolatingSwitches
iii.CurrentTransformers
iv.PotentialTransformers
v.CircuitBreaker
vi.Earthingarrangement
vii.Relays
viii.Inter-Lockingarrangements
(i)BUS-BARS:-
Busbarsaredefinedastheconductorstowhichseveralincomingand
outgoinglinesareconnected.TheyareessentialcomponentofSwitchgear.Theyare
madeupofCu.andAl.ThetypeanddesignersofSwitchgeardependsuponrated
normalcurrentandshortcircuitcapacity.TheBusbarsareenclosedinbusbarchamber.
InKaTPPtherearetwotypesofindoorswitchgear:
11KV&3.3KVorHightension

90
3.415VorLowtension
(ii)ISOLATINGSWITCHING:-
1.Theyarecapableof-InterruptingtheTransformerMagnetizingCurrent.Interrupting
linechargingCurrent.InterruptingloadTransformerSwitching.
2.ThemainapplicationisinconnectionwithfeedorbankTransformerfeeders&there
unitsmakeitpossibletoswitchoutoneTransformerwhiletheotherisstillonload.
(iii)CIRCUITBREAKER:-
Theyarecapableofbreakingthecircuitonfaults.Itisheavyduty
equipmentmainlyutilizedforprotectionofvariouscircuitandseparationofloads.
TheCircuitBreakerusesonarelayorbymanualsignal.TheCircuit
BreakerswhichareusedinSwitchgearareVCBtype.
(iv)EARTHEDSWITCHES:-
Earthedswitchisconnectedbetweenlineconductorandearth.Normally
itisopenwhenlineisdisconnected.TheEarthingswitchedisclosedsoastodischarge
thevoltagetrappedonlineforhighvoltageandsothecapacitorbetweenlineandearth
ischargedtohighvoltage.Formaintenanceworktheirvoltagearedischargedtoearth
byclosingtheearthswitch.
(vi)INTER-LOCKING:-
Thefollowingtypeofinter-lockingareprovided
TheCircuitBreakermustbeinopenpositionbeforeitisloweredinthisposition.
TheCircuitBreakercanbeclosedonlyraisingthefinalpluginposition.
TheCircuitBreakercanbeclosedbeforeraisingpluginposition.
Inter-lockingbetweenisolators,EarthingswitchesandCircuitBreakersareprovided.
(vii)RELAYS:-
AProtectiveRelayisadevicethatdetectsthefaultandinitiatesthe
operationofthecircuitbreakertoisolatethedefectiveelementfromtherestofthe
system.

91
7.2.2PROTECTION
Thefault,whichmayoccurinstatorwindingare-
1.Phasetophasefault.
2.Phasetogroundfault.
3.Linetolinefault.
4.Overheating.
Thesefaultsaredueto-
1.Overvoltageisbecauseofsystemtransients,lighteningswitchingsurgesorsudden
lossofload.
2.Insulationdeteriorationduetoanymatter,moisture,coronadischarge,Hardeningof
solidandvibration.
Itisverynecessarytominimizethetrippingtimeduringanyfaultsothatthelamination
isnotdamaged.Therepairingbeingaffectedbyreplacingthefaultystatorbar.A
delayedclearancemaydamagethelamination,sofiremaybecausedandpartialre-
insulationofcoremaybenecessary.
GENERATOR PROTECTION:-
TheGeneratorisrequiredtobetrippedorisolatedonfollowingtypesoffault:
1.Failureofgeneratinginsulation.
2.Failureofprimemoverturbineorboiler.
3.Failureofgeneratingauxiliariessuchashydrogengassystem,sealoil
system,coolingsystem,andcoolingwatersystem.
4.Failureofgrid.
ThetrippingcommandtotheGTbreakerisgivenbymastertriprelay866,
86GT,and86GB.Tomakeitfeasiblethemastertriprelayisconnectedtoacommon
bus.Alltheprotectionrelaysareconnectedinbetweenthepositionof220V.
D.C.PROTECTIONANDTHECOMMON BUS:-
Protectiondevicearethatdetectabnormalconditioninelectricalcircuit
bymeasuringtheelectricalquantitywhicharedifferentundernormalandfault
condition.Thebasicelectricalquantitiesarevoltage,current,phaseangleandfrequency.

92
Therelaydoesn’toperatefornormalvoltage,normalcurrent,normalphaseangleand
normalfrequency.
Differenttypeofprotectioncanbelistedas:
1.Currentoperatedprotection.
2.Differentprotection.
3.Voltageoperatedprotection.
4.Impedancetypeprotection.
5.Frequencytypeprotection.
1.CURRENTOPERATEDPROTECTION:-
a.Generatordifferentialprotection.
b.Generatornegativesequenceprotection.
c.Generatoroutputcurrentprotection.
d.Generatorstatorearthfaultprotection.
e.GeneratorREFprotection.
f.Generatorstandbyearthfaultprotection.
g.UATo/cprotection.
h.Generatoro/candshortcircuitprotection.
i.L.B.B.protection.
2.DIFFERENTIALPROTECTION:-
a.Generatoroveralldifferentialprotection.
b.UATdifferentialprotection.
3.VOLTAGEOPERATEDPROTECTION:-
a.Generatorovervoltageprotection.
b.GeneratorstatorE/Fprotection.
c.GTovervoltageprotection.
d.PT’svoltagesupervisionprotection.
e.Generatorinter-turnfaultprotection.
4.IMPEDANCETYPEPROTECTION:-
a.Generatorbackupimpedanceprotection.
b.Generatorlossofexactprotection.
c.Generatorpoleslipprotection.
5.FREQUENCYTYPEPROTECTION:-
a.GeneratorunderprotectionFrequency.

93
REQUIREMENT OFPROTECTIVEDEVICES:
Selectivity:Onlythatpartoftheinstallationcontainingfaultshouldisdisconnected.
Safetyagainstfaultytripping:Thereshouldbenotripwhenthereisnofault.
Reliability:Thedevicemustactwithintherequiredtime.
Sensitivity:Lowestsignalinputvalueatwhichthedevicemustact.
Trippingtime:Thereshouldbeaclearadistinctionbetweenthetrippingtimeofthe
device,consideringthecircumstancessuchascurrentandtotaltrippingtimeforthefault.
7.3CONTROLROOM
Variousmeasurementscanbetakenatthecontrolroomsimultaneously.
Thesecondimportantpartofthecontrolroomisrelaypart.Variousrelaysareprovided
hereBYAREVALTD.
Fig-26CONTROLROOM
CONTROLROOMPANELS:-

94
FANCONTROLDESK:-
IDFan(Induceddraftfan,2nos.)atfullload.
FDFan(Forceddraftfan,2nos.)atfullload.
PAFan(Primaryairfan,2nos.)atfullload.
PRESSURECONTROLDESK:-
Furnacepressure(5-10mmwcl.)
Primaryairheaderpressure(750-800mmwcl).
1.FUELCONTROLDESK:-
Coaloilflow.
Oilpressure.
Temperatureofmill(inletoroutlet)
Flowofair.
Drumlevelcontrol,flowofsteamwater
Pressureofsteamandwater.
Temperatureofsteamandwater.
1.TURBINEDESK:-
Pressurecontrol,loadmodecontrol.
Speedcontrol.
Ejector,controlvalves,stopsvalvesanddeviators.
1.GENERATORCONTROLPANEL:-
Voltage,current,MVAR.
Stator,rotortemperature.
Forstatorcooling.
7.4AUXILIARYSUPPLY

95
Electricalsupplysystemisthemostimportantpartofthethermalpower
station.Thefailureofevencomparativelysmallequipmentcouldresultinthelosingof
loadorbeingputoutofcommission.
SOURCEOFSUPPLY:-
1.URGENTAUXILLARY:-
Thoseareassociatedwithrunningofunitswhoselosswouldcausean
immediatereductionunitoutput.
2.SERVICEAUXILLARY:-
Thesearecommonauxiliariesassociatedwithoneormoreunits.There
losswouldnotaffecttheoutputoftheunitafterconsiderabletimeofinterval.
ELECTRICALAUXILLARYSYSTEM:-
TheKaTPPauxiliariesareoperatedattwovoltagesthatare6.6KVand
415V.Inrespectof6.6KVsystem,autochangeoverfacilityisprovidedforchangeover
ofsourceofsupplyfromunitstationinthecaseofunittripout.Thestationishaving
thefollowingauxiliarysystem:-
Morethen1500KWconnectedon11KV.
Morethen200KWlessthen1500KWconnectedon3.3KV.
Lessthen200KWon415V.
220VD.C.undergroundsystemforuseincontrolandprotectionsystem.
3.3KVSYSTEM:-
Fortherunningunit,theunitauxiliariesarenormallyfedfromgen’r
itselfthrough11/3.3KV,15MVAunitauxiliarytransformers,whichis,connectedto
theunitswitchgearviz.USAandUSB.Powertostationauxiliariesandbyunit
auxiliaryisfedfrom220/3.3KV,50MVAstationtransformersthroughtwoswitchgear
viz.
415VSYSTEMS:-
Fordrivingten100Wmotorsandotheraccessories,weneed415V
supply.Forthispurposevarioustransformerareusedtostepdown3.3KVto415Vat
variousplaces.Oilcircuitbreakerisprovidedbetween3.3KVbusandprimarywinding
oftransformer.

96
Thissystemisthreephase,4-wiresolidlygroundedsystemismade
availablefor1000KVA,3.3KV/433Vtransformer.
240VSYSTEMS:-240V,50HZ.Systemisprovidedforcontrolcircuitsofcontactors
modularofall415VswitchgearorMCCspaceheatingofvariousswitchgearsand
spaceheatingofallmotorabove37.5KWrating.Eachofmoduleswithpower
contactor.
415V/24VSYSTEMS:-24V,50HZ.Supplyisusedforwindingheatingofmotors
upto37.5KW.Thisismadeavailablebyoneormore1-415V/24V,4KVA
transformers.Threetransformersareprovidedwith415Vswitchgear/MCB.
400KVSYSTEMS:- Two400KVbuseshavebeenprovidedinswitchyardand
areinterconnectedthroughabuscoupler.Eachofthe2X600MWgeneratorsare
connectedtothissystemthroughastepup150/200/250MVAgenerator.
220VD.C.SYSTEMS:-
Thestation220VD.C.systemisusedforcontrol,interlocks,and
protectionindicationandannunciationcircuitofvariousequipments.Inadditionsome
criticalunitandstationauxiliaryalsooperateon220VD.C.e.g.D.C.emergencyoil
pumpforturbinelubricationD.C.lightningetc.
CHAPTER-08,EFFICIENCY &CONCLUSION

97
8.1.EFFICIENCY
InKaTPPweconvertpotentialenergyorchemicalenergyofthefuel
intoheatbytheprocessofcombustion.Theheatisgiventothewateranditconvertsits
formintosteam.Thepressureofsteamrotatestheturbine,whichisnowintheformof
kineticenergy.Generatorproducingelectricalenergy,whichissandtodifferent
localitiesforutilization,consumesthiskineticenergy.
Enthalpyisdefinedasthethermodynamicpropertyofasystem,isequal
tothesumofitsinternalenergyandtheproductofitspressureandvolume.
EnthalpyisanancientGreekwordmeaningevolutionandmany
eminentscholarshavebeenattemptedtodefineit.Itisamathematicalconceptof
availableenergyinthesteam.
Efficiencyinthecaseofelectricalgeneratorprocesscanbeexpressedas
theamountofheatenergylibratedintheboilercomparedwiththeamountofelectrical
energygeneratedwithit.
PLANTEFFICIENCY:-
Wewilldividewholeplantefficiencyinfour-componentefficiency:
(1).Cycleefficiency
(2).Turbogeneratorefficiency
(3).Boilerefficiency
(4).Auxiliarypowerefficiency
Overall=BoilerxTurbinexCyclexGenerator
1.CYCLEEFFICIENCY:-
Cycleefficiencybeingthemaximumpossibleheatenergythat
couldbeobtainedfromanyparticularsetofsteamconditionsemployed.Theoperation
ofheatreductionofcondenser,whichisalmost50%ofthetotalavailableheat,makes
rankingcyclerelativelyinefficient.
Itcanbecontrolledby:-
(a).Condenservacuum.
(b).SteamconditionsofCVandLV
(c).Regenerativefeedheating.
Cycle=energyavailableforconversioninwork
Energygiveninboilerasheat

98
2.ALTERNATOR EFFICIENCY:-Thealternatorisaefficientmachineatabout98
%efficiency.Thelossesare:
(a).Copperandironloss
(b).Windagelosses
Operationallytheplantisgovernedbythegridrequirements.Forvoltageweuse
thesetoutfromgeneratortransformer.
3.BOILEREFFICIENCY:-Itdependsupon:
(a).Dryfluegasloss:Increasebyexcessairinboiler.
(b).Wetfluegasloss:Moistureincoal.
(c).Moistureincombustionloss:Hydrogenloss.
(d).Radiatorandinaccountedloss.
4.TURBINEEFFICIENCY:-Itmeanstheefficiencyofsteamturbineinconverting
theheatenergymadeavailableinthecycleintoactualmechanicalwork.
Turbinelossesfallsintooneortwogroupseitherlossesexternaltotheturbineorlosses
directlyrelatedtotheexpansionofthesteaminthecylinder.
8.2CONCLUSION

99
ThefirstphaseofPracticalTraininghasprovedtobequitefruitful.It
providesanopportunityforencounterwithsuchhugemachineslikewagontippler,
600MWTurbinesandGenerators.
Thearchitectureofthepowerplant,thewayvariousunitsarelinkedand
thewayworkingofwholeplantiscontrolledmakethestudentrealizethatengineering
isnotjustlearningthestructuredescriptionandworkingofvariousmachinebutthe
greatpartisofplanningpropermanagement.
Italsoprovidesanopportunitytoleanlowtechnologyusedatproper
placeandtimecancavealotoflabor.
Buttherearefewfactorsthatrequirespecialmention.Trainingisnot
carriedtoitstruespirit.Itisrecommendedthatthereshouldbesomeprojectspecially
meantforstudentswherepresenceofauthorityshouldbeensured.Thereshouldbe
strictmonitoringoftheperformanceofstudentsandsystemofgradingbeimprovedon
basisofworkdone.
Howevertraininghasprovedtobequitefruitful.Ithasallowedan
opportunitytogetanexposureofthepracticalimplementationtotheoretical
fundamentals.
REFERENCE
CHAPTER-09

100
[1].www.rrvunl.com
[2].www.energyindia.com
[3].www.googleindia.com
[4].www.thermalpower.com
[5].www.scibe.com
[6].Fundamentalsofelectricalengineering/powerplant/tpp/655,AshfaqHusain
DhanpatRai&Co.
[7].Generationofelectricalpower/thermalstation,BRGupta,S.CHAND
PUBLICATION.
[8].EPCBookVolume-V,TCE5248.A-H-500-001
[9].AnnualReportofTCELtd.
[10]. SingleLineDiagramGID-118-EL-XJ-2012,BGRREPORTON
KaTPP.
[11].SinglelinediagramKaTPPPlanGID-2012,BGRENERGYSYSTEM.
[12].PPTOnThermalPlant/TCE/MShreenivashan/104840/.
[13].AssignmentShreenivashan/Tce/104840