TABLE 1.8Properties of Legendre and Associate Legendre Functions
1.
1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12txþx
2
p ¼
X
1
n¼0
Pn(t)x
n
, jtj1,jxj<1
2.P
n(t)¼
P
[n=2]
k¼0
(1)
k
(2n2k)!t
n2k
2
n
k!(nk)!(n2k)!
, [n=2]¼
n
2
,nis even;
[n=2]¼(n1)=2,nis odd
3.P
0(t)¼1
4.P
2n(0)¼
1
2
n
¼
(1)
n
(2n)!
2
2n
(n!)
2
, n¼1, 2, . . .
5.P
2nþ1(0)¼0, n¼0, 1, 2, . . .
6.P
2n(t)¼P 2n(t),P 2nþ1(t)?P 2nþ1(t), n¼0, 1, 2, . . .
7.P
n(t)¼(1)
n
P
n(t), n¼0, 1, 2, . . .
8.P
n(1)¼1, n¼0, 1, 2,...;
P
n(1)¼(1)
n
, n¼0, 1, 2, . . .
9.P
n(t)¼
1
2
n
n!
d
n
dt
n
(t
2
1)
n
¼Rodrigues formula, n¼0, 1, 2, . . .
10. (nþ1)P
nþ1(t)(2nþ1)tP
n(t)þnP
n1(t)¼0, n¼1, 2, . . .
11.P
0
nþ1
(t)2tP
0
n
(t)þP
0
n1
(t)P n(t)¼0, n¼1, 2, . . .
12.P
0
n1
(t)¼P n(t)þ2tP
0
n
(t)P
0
nþ1
(t) n¼1, 2, . . .
13.P
0
nþ1
(t)¼P n(t)þ2tP
0
n
(t)P
0
n1
(t) n¼1, 2, . . .
14.P
0
nþ1
(t)tP
0
n
(t)¼(nþ1)P n(t) n¼0, 1, 2, . . .
15.tP
0
n
(t)P
0
n1
(t)¼nP n(t) n¼1, 2, . . .
16.P
0
nþ1
(t)P
0
n1
(t)¼(2nþ1)P n(t) n¼1, 2, . . .
17. (1t
2
)P
0
n
(t)¼nP n1(t)ntP n(t) n¼1, 2, . . .
18.jP
n(t)j<1, 1<t<1
19.P
2n(t)¼
(1)
n
2
2n1
X
n
k¼0
(1)
k
(2nþ2k1)!
(2k)!(nþk1)!(nk)!
t
2k
, n¼0, 1, 2, . . .
20. (1t
2
)P
0
n
(t)¼(nþ1)[tP n(t)P nþ1(t)], n¼0, 1, 2, . . .
21.
Ð
1
1
Pn(t)dt¼0,
n¼1, 2, . . .
22.jP
n(t)j1, jtj1
23.
Ð
1
1
Pn(t)Pm(t)dt¼0,
n6¼m
24.
Ð
1
1
[Pn(t)]
2
dt¼
2
2nþ1
, n¼0, 1, 2, . . .
25.
1
2
Ð1
1
t
m
Ps(t)dt¼
m(m2)(msþ2)
(mþsþ1)(mþs1)(mþ1)
,m,sare even
26.
1 2
Ð1
1
t
m
Ps(t)dt¼(m1)(m3)(msþ2)
(mþsþ1)(mþs1)(mþ2)
,m,sare odd
27.
Ð
1
1
tPn(t)Pn1(t)dt¼
2n
4n
2
1
, n¼1, 2, . . .
28.
Ð
1
1
Pn(t)P
0
nþ1
(t)dt¼2,
n¼0, 1, 2, . . .
29.
Ð
1
1
tP
0
n
(t)Pn(t)dt¼
2n
2nþ1
, n¼0, 1, 2, . . .
30.
Ð
1
1
(1t
2
)P
0
n
(t)P
0
k
(t)dt¼0,
k6¼n
31.
Ð
1
1
(1t)
1=2
Pn(t)dt¼
2
ffiffiffi
2
p
2nþ1
, n¼0, 1, 2, . . .
32.
Ð
1
1
t
2
Pnþ1(t)Pn1(t)dt¼
2n(nþ1)
(4n
2
1)(2nþ3)
, n¼1, 2, . . .
33.
Ð
1
1
(t
2
1)P nþ1(t)P
0
n
(t)dt¼
2n(nþ1)
(2nþ1)(2nþ3)
, n¼1, 2, . . .
34.
Ð
1
1
t
n
Pn(t)dt¼
2
nþ1
(n!)
2
(2nþ1)!
, n¼0, 1, 2, . . .
35.
Ð
1
1
t
2
[Pn(t)]
2
dt¼
2
(2nþ1)
2
(nþ1)
2
2nþ3
þ
n
2
2n1
n¼0, 1, 2, . . .
1-26 Transforms and Applications Handbook