Vibration Absorber

9,895 views 12 slides Jun 01, 2015
Slide 1
Slide 1 of 12
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12

About This Presentation

https://wikicourses.wikispaces.com/Topic+Vibration+Absorber


Slide Content

#WikiCourses
http://WikiCourses.WikiSpaces.com
Vibration Absorber
Mohammad Tawfik
Vibration Absorber
The first passive damping
technique we will learn!

#WikiCourses
http://WikiCourses.WikiSpaces.com
Vibration Absorber
Mohammad Tawfik
For a 2-DOF System
•For the shown 2-DOF
system, the equations
of motion may be
written as:


•Where: fxx KM 






2
1
f
f
f

#WikiCourses
http://WikiCourses.WikiSpaces.com
Vibration Absorber
Mohammad Tawfik
For Harmonic Excitation
•We may write the
equation for each of
the excitation
frequency in the form
of:

•Then we may add
both solutions! 







0
11
tCosf
KM

xx 







tCosf
KM
22
0

xx

#WikiCourses
http://WikiCourses.WikiSpaces.com
Vibration Absorber
Mohammad Tawfik
Consider the first force
•We may write the
equation in the form:

•And the solution in
the form:

•Which will give: tCosfKM 
1
0
1






xx tCos
x
x








2
1
x  xx
2
2
12
 






 tCos
x
x


#WikiCourses
http://WikiCourses.WikiSpaces.com
Vibration Absorber
Mohammad Tawfik
The equation of motion becomes
•Get x
1() and find out when does it equal
to zero! 




































00
0
1
2
1
22
221
2
2
1
2
f
x
x
kk
kkk
m
m

#WikiCourses
http://WikiCourses.WikiSpaces.com
Vibration Absorber
Mohammad Tawfik
Using the Dynamic Stiffness
Matrix
•Writing down the dynamic stiffness matrix:


Getting the inverse: 




















0
1
2
1
22
2
2
2211
2
f
x
x
KmK
KKKm

   






















0
1
2
222
2
211
2
211
2
2
222
2
2
1 f
KKmKKm
KKmK
KKm
x
x


#WikiCourses
http://WikiCourses.WikiSpaces.com
Vibration Absorber
Mohammad Tawfik
Obtaining the Solution
•Multiply the inverse by the right-hand-side


•For the first degree of freedom:   
 





 








12
122
2
21
2
21212
4
212
1 1
fK
fKm
KKKmKKmmmx
x 
  
  
0
21
2
21212
4
21
122
2
1




KKKmKKmmm
fKm
x


#WikiCourses
http://WikiCourses.WikiSpaces.com
Vibration Absorber
Mohammad Tawfik
Vibration Absorber
•For the first degree of freedom to be
stationary, i.e. x
1=0
•The excitation frequency have to satisfy:


•Note that this frequency is equal to the
natural frequency of the auxiliary spring-
mass system alone 2
2
m
K


#WikiCourses
http://WikiCourses.WikiSpaces.com
Vibration Absorber
Mohammad Tawfik
Vibration absorber

#WikiCourses
http://WikiCourses.WikiSpaces.com
Vibration Absorber
Mohammad Tawfik
Vibration absorber

#WikiCourses
http://WikiCourses.WikiSpaces.com
Vibration Absorber
Mohammad Tawfik
Homework #2
•Repeat the example of this lecture using
f2=f3=0 and f1=1 AND f1=f2=0 and f3=1
•Plot the response of each mass for each
of the excitation functions
•Comment on the results in the lights of
your understanding of the concept of
vibration absorber

#WikiCourses
http://WikiCourses.WikiSpaces.com
Vibration Absorber
Mohammad Tawfik
Homework #2 (cont’d)
•Use modal decomposition
(diagonalization) to obtain the same
results.