Visual cortex

hansvanni 2,123 views 41 slides Jan 11, 2010
Slide 1
Slide 1 of 41
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41

About This Presentation

No description available for this slideshow.


Slide Content

Visual cortex: one for all and all for one
Simo Vanni, MD PhD
Vision systems physiology group
Brain Research Unit, Low Temperature Laboratory
Aalto University
School of Science and Technology

What is common to subjective
experience, visual perception, and neural
activation?
Statistics of individual visual
environment

Sensory and motor areas in human brain
Van Essen (2003) in Visual Neurosciences
27 %
7 % 7 %
8 %

Felleman & Van Essen, Cerebral Cortex 1 (1991) 1-47

Felleman & Van Essen, Cerebral Cortex 1 (1991) 1-47

Mapping of visual cortex
Courtesy of Linda Henriksson

Visual information
Correlated features
Sparse coding
Independent representations

Visual information
Correlated features
Sparse coding
Independent representations

Pixel intensity correlations
Distance
Distance
Distance (pixels)
Correlation
From: Hyvärinen et al. (2009) Natural Image
Statistics : A Probabilistic Approach to Early
Computational Vision. London: Springer.

From the eye to the
brain Retina
Thalamus
Cerebral,
cortex

Correlated phases at multiple scales
Henriksson, Hyvärinen & Vanni. J Neurosci 29 (2009) 14342-14351

Sensitivity to correlated phase
Henriksson, Hyvärinen & Vanni. J Neurosci 29 (2009) 14342-14351

Orientation correlations
Geissler et al., Vision Research 41 (2001) 711–724

A neuron learns to be selective
Dyan & Abbot: Theoretical Neuroscience (2001) MIT Press

Different tuning functions for orientation
Dyan & Abbot: Theoretical Neuroscience (2001) MIT Press
Neuron 1Neuron 2Neuron 3Neuron 4

Multiple systems on top of each other
Hübener ym, J Neurosci 17 (1997) 9270-9284
Ocular dominance and orientationSpatial frequency and orientation

What is a visual object…

http://members.lycos.nl/amazingart/E/20.html

Visual information is the regularities of
co-occurence, ”statistics”, of our
environment

Visual information
Correlated features
Sparse coding
Independent representations

What is sparse coding
•Many units are inactive, while few units are
strongly active (population sparseness)
•A single unit has on average low activity,
with occasional bursts at high frequency
(lifetime sparseness)
•Mean energy consumption down
•Computational benefits

Sparse coding
Vinje & Gallant, Science 287 (2000) 1273-1276

Sparse coding of different tuning
functions in the primary visual cortex
Position
Eye (stereo image)
Spatial frequency
(scale)
Orientation
Direction and speed of
motion
Wavelength (color)
Courtesy of Aapo Hyvärinen

Visual information
Correlated features
Sparse coding
Independent representations

Context supports perception

Context distorts perception

Area tuning function
Varying size
of drifting
gratings
Courtesy of Lauri Nurminen and Markku Kilpeläinen

Angelucci & Bressloff, Prog Brain Res 154 (2006) 93 – 120
Receptive field

A block model of surround interaction
Schwabe et al. J Neurosci 26 (2006) 9117-9129
Afferent input
Low-level area
High-level area

Subtractive normalization model applied
to non-linear interactions in the human
cortex
What visual information has to do
with surround modulation?

Stimuli
Vanni & Rosenström, in preparation

Centre response covaries with the
surround response
Vanni & Rosenström, in preparation
VOIcentre

Active voxels for centre are suppressed
during simultaneous presentation
Vanni & Rosenström, in preparation
VOIcentre

Suppression (red) is surrounded by
facilitation (blue)
Vanni & Rosenström, in preparation

Efficient coding
Response to stimulus A, A’
Response to stimulus B,
B’
A’ = A – dB
B’ = B – dA
Barlow, H., and Földiák, P. (1989). In: The computing neuron. R. Durbin, et al., eds.
(Boston, Addison-Wesley Longman Publishing Co., Inc), pp. 54-72.

Independence, decorrelation
•Effective use of narrow dynamic range
(surround modulation) and limited time
(adaptation)
•More explicit causal factors
•Implemented by Hebbian and anti-Hebbian
learning rules
Barlow, H., and Földiák, P. (1989). In: The computing neuron. R. Durbin, et al., eds.
(Boston, Addison-Wesley Longman Publishing Co., Inc), pp. 54-72.

A hypothesis of the visual brain
•Our brain learns a hierarchical model of our visual
environment
•Each neuron in the model is sensitive to a set of
correlated features in the environment
•Population of neurons in this model form a sparse
representation by relatively independent units
•The tuning functions may be the most informative
dimensions of visual environment

Collaborators
•Aalto University
Linda Henriksson
Lauri Nurminen
Tom Rosenström
•University of Helsinki
Jarmo Hurri
Aapo Hyvärinen
Markku Kilpeläinen
Pentti Laurinen
•ANU, Canberra
Andrew James