37 2.2. MRA in L
2
(a, b)
The support of each of the
lef t
functions
l
x) and
lef t
ϕ( ψ
l
(x) (l = 0, 1, · · · , K − 1) is [0, 2K − 1] ⊂ R
+
while that of the functions ϕ
right
(x) and ψ
right
(x) (r = −K, −K + 1, · · · , −1) is [−2K + 1, 0] ⊂ R
−
r r .
The superscript left (right) is used to indicate that the support of the corresponding function contains
the left (right) end of the half line R
+
= [0, ∞) (R
−
= (−∞, 0]). All the above functions are defined
at resolution 0. Their forms at resolution j ∈ Z are defined as
lef t
j
l
j
( ) = 2
ef t
ϕ x ϕ (2
j
x); ϕ(x) = 2
ϕ(2
j
x −
right
x) 2
j
l);ϕ ( =
ϕ
right
2
l jl
2
jr
(2
j
2
jl r x), (2.2.3.3)
lef t
j
lef t j
j
right
j
ψ
2
right
j
2 2
j
jl
(x) = 2 ψ
l
(2x); ψjl(x) = 2 ψ(2x − l);ψ
jr
(x) = 2 ψ
r (2x). (2.2.3.4)
{
lef t lef t
The setϕ
j l
(x); l = 0, 1, · · · , K −1}∪{ϕj0k(x); k = K, K +1, · ·}∪[
0
· {ψ
jl
(x); l = 0, 1, · · · , K −1}∪
{ψjk(x); k = K, K+1, · · ·}, j ≥ j0] for some j0 ∈ Z forms an orthonormal basis for L
2
(R
+
). Similarly,
right
the set {ϕj0k(x); k = · · · , −K − 2, −K − 1} ∪ {ϕ
j r
(x); r = −K, −K + 1, · · · , −1} ∪ [{ψjk(x); k =
0
· · · , −K − 2, −K − 1} ∪ {
right
ψ
jr
(x); r = −K, −K + 1, · · · , −1}, j ≥ j0] for some j0 ∈ Z forms an
orthonormal basis for L
2
(R
−
). Contrary to the single relation (2.1.4.2) ϕ(x) = h · Φ(x) for the
refinement equation for
lef t
ϕ(x), the two-scale relations for each of ϕ
l
(x), l = 0, · · · K − 1 and
ϕ
right
r (x), r = −K, · · · , −1 involve other functions of the corresponding set and some interior scale
functions adjacent to the respective boundary. We use the symbols (Panja and Mandal, 2015)
lef t lef t lef t lef t
Φ
j
(x) = (ϕ
j 0
(x), ϕ
j 1
(x), · · · , ϕ
j K1
(x))K,×1 (2.2.3.5a)
−
right right right right
Φ
j
(x) = (ϕ
j
(x), ϕ
−K j −K+1
(x), · · · , ϕ
j 1
(x)), (
− K 2.2.3.5b) ×1
lef t lef t lef t lef t
Ψ
j
(x) = (ψ
j 0
(x), ψ
j 1
(x), · · ·
Mandal
, ψ
NBand j K1
(x))K, (2.2.3.5c)×1
−
right right
PanjaM
right
M
right
Ψ
j
(x) = (ψ
j
(x), ψ ψ (x)), (2.2.3.5d)
−K j
(x), ,
−K+1
· · ·
j −1 K×1
Φ
LI
j (x) = (ϕj K (x), ϕj K+1(x), · · · , ϕj 3K2(x))
(2K1) 1, (2.2.3.5e) − − ×
Φ
RI
j (x) = (ϕj 3K+1(x), ϕj 3K+2(x), · · · , ϕj K1(x))
(2K1) 1. (2.2.3.5f)− − − − − ×
Then the two-scale relations for boundary scale functions can be stated as
√ �
lef t ef
Φ
0
= 2 H
lef tl t
(x) Φ
0
(2x) + H
LI
Φ
LI
0 (2x) , (2.2.3.6a)
�
right right
Φ
0
(x) =
√
2 H
right
Φ
0
(2x) + H
RI
Φ
RI
(2
�
0x) , (2.2.3.6b)
and the relation amongst boundary scale functions and wavelets can also b
�
e expressed as
lef t
Ψ(x) =
√
2 G
lef tlef t
0
Φ
0
(2x) + G
LI
Φ
LI
0 (2x) , (2.2.3.7a)
right right
Ψ
0
(x) =
√
2
�
�
G
right
Φ (2x) + G
RI
0
Φ
RI
(2
�
0 x)
�
. (2.2.3.7b)
In the above, the K × K matrices H
lef t
, H
right
, G
lef t
, G
right
and the K (2K 1) matri
ces H
LI
, H
RI
, G
LI
, G
RI
× −
are boundary filters (H’s are low-pass, G’s are high-pass with elements
lef t
h
right lef t right
km
, h
rm , g
k
m
, g
rm in the notation of Cohen et al., 1993. These filter coefficients play an
important role in the MRA of L
2
([a, b]) and multiscale representation/regularization of singular
operators often appear in the subsequent chapters of the book. However, their determination is a