XemP 08H CalB-222 Ch03 Derivative E.pdfsx

KhoaNguyn387562 10 views 38 slides Mar 08, 2025
Slide 1
Slide 1 of 38
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38

About This Presentation

Calculus in your nuts


Slide Content

HCMUT –DEPARTMEND OF MATH. APPLIED
---------------------------------------------------------------------------------------------------------------------
CALCULUS FOR BUSINESS –221 Semester
CHAPTER 3: DERIVATIVE
•PhD. NGUYỄN QUỐC LÂN (November 2022)

RATE OF CHANGE: CONSTANT & VARIABLE
--------------------------------------------------------------------------------------------------------------------------------------------
Linearfunctiony=ax+bchangesatconstantrate→Slope
Example:Sincebeginningof
theyear,thepriceofabottle
ofsodahasbeenrisingata
constantrateof2
cents/month Price
functiony=2x+b(x:
numberofmonth)…
Generally,therateofchangeisnotconstant.Howtodescribe?
Answer:Usederivativef’(x)(whichistheslopeoftangentline).
-
F
General
+(x)
=>
Rate
=
f(x)
=
S
-
-------

PRACTICAL EXAMPLE
------------------------------------------------------------------------------------------------------------------------------------------------------------
----------------------------------------------------------------

DERIVATIVE
-----------------------------------------------------------------------------------------------------------------------------------
Derivativeoff(x),x=a:
Reading:f’(a)is“fprimeofa”,anddf/dxis“deefbydeex”.
=
(a)
-
! I

TECHNIQUE (HOFFMANN, CHAPTER 2, SECTION 2 →4).
-----------------------------------------------------------------------------------------------------------------------------------
() () () ()()
/
//1
/
2
/
3
/
2
,,,...3,2:Highschool 





===

v
u
uvvuxxxxxx


Tangentequationof(C):y=f(x)atx=a:
Rateatwhichy=f(x)changeswithrespecttoxatx=a:
()()()axafafy −=−
/
()af
/
()
()
()
12
2
/
0
2
1
2
0
BKEL Calculated questions
21
a/ Given ,evaluate approximately
1
b/ Let be the tangent equation of (C): 2 3 at 1.
Evaluate approximately .
x
y y x dx
x
ygx y x xx
g x dx
+
=

+
==+=

12x
+
3x)'
=
4x
+3(or)
=
vv
+
uv
(cost)
=
-
sinx
a)y
=
x
+
1

j
=
/
y
=I
5
b)y
=
2
x
3+3xat
x=
1
y(1)
=
5
y
=
6x2
+
3y'(1)
=
9
y
-
5
=
9(x
-
1)
=>
y
=
gx
-
4
=
1!
S
19x
-
4) 2dx
=
=
=
x)
b)y
=
==
y'(2)
=
-
3
c)FindWate
(x
-
1)2 y
=
xXchanges
at
x
=
1
,
5
=
2
a)
y
=
f()
=
2
+
3x
=
f()
=
5
Bam may
:)k
=
2
*
Eme
(x
=
15
=
9,45
=>
f
' (1)
=
7
=>
Tangent
:
y
-
5
=
7(x
-
1)
=
y
=
7x
-
2
+(g(x)dx
·
may

RATE OF CHANGE
-----------------------------------------------------------------------------------------------------------------------------------
21
Example: Find the rate at which changes with respect to at 2
1
x
yxx
x
+
==

Rateatwhichy=f(x)changeswithrespecttoxatx=a:()af
/

Ans
:
P'(x)
=
-
800x
+
6800
=
4'/9)
=
-
400
dollars/thounds
unit
Conclusion
:
Profitdecreasing
atrateof400
dollars/thousands
units
p'(g)
lim
Dollars
ds
-
>
unitoffunction
~
variable

CHAIN RULE
-----------------------------------------------------------------------------------------------------------------------------------

-0
=
y
=
f(g(x))
-
+
=
4
dc()
+
d
=
y
=
+
(g(x))'
-
g(x)
=
+
=
8
dx4
25Khainrutel
=>
c'(x)
+
v()
,
((x)
=
1x
+
4x
+
53
=>
(y
*
+
4x
+
53)
·
10
,
2
+
+0
,
037)
x(+)
=
0
,
2+
2+
0
,
037
3
=10
,
13
c(x(
+
)
=
1(0
,
2
+
+0
,
03+
12
+
410
,
2+
2+0
,
037)
+
53-
Simply
-
>
C'(xk
+
1)
c'(
+
)
=
0
,
4+
+0
,
03
x
+
xy
+
y
-
-
19
=
0
10
,
4+
+0
,
03
Cau
y
=
-
SL y'(x0)x=
2
+
y
=
3N
=oy
=
XXX
2x+y
+
2y y
+
xy
=
0
=>
-
2x
-
y
=
=
x
,
75
+
-
1
,
53??
-
2y
+x
-

MARGINAL ANALYSIS
--------------------------------------------------------------------------------------------------------------------------------------------
Ineconomics,theuseofthederivativetoapproximatethechange
inaquantitythatresultsfromone(1)–unitincreasein
productioniscalledmarginalanalysis
Whichargumentcouldweusetotrytobuyoneairticketfor
HochiminhCity–HaNoiin(forexample!)100kVND?

Remember
:
*
fin
f(x)
=
=>
When
x=x
,
f(x)L
En
x+x0 x0
fk)
=
1
2
*
f(a)=
lim
I
If
+x
=
1(00x
=
x
-
a
=
1
=x
=a
+
1)
in
gritson
=>
f(a+h)
-
f(a)
=
+'(a)(
*
)
=
When
x=
0
:
+(a)
zotef(a)
.
*
Cost function
:
Cale()
:
units"Thechangeofproduct
((9)
(((9)
102
unit
nd
-
(19)
:
Thecostof10unit

MARGINAL ANALYSIS
--------------------------------------------------------------------------------------------------------------------------------------------
CostC(x)MarginalCostMC(a)=C’(a)C(a+1)–C(a)=
Costofthe(a+1)
th
product

-
changeofcost
when
x
=
a
1
unit
((x)
=
292
+
49
,
970
2)
Use
marginal
costtoestimatethecostof
15th
un
it
1)
Marginal
costat
4?
((is)
-
((14)
=
C'(14)
C'(q)
=
4q
+4
=
C(4)
=
20
=
cost
increase
by20$
T
I
-
15 14 14
When
a
increase
from4
by
T
unit Nhof(a
+
1)
-
f(a)
=
f'(a)

a)Mc(x)
=
+x
+
3
b)
m
((9)
-
...
((8)
((9)
-
C(8)=C'(8)
=
59
c)
Actualcost
=
((g)
-
(28)
=
(
+
3
.
9
+
98)
-
(
+3
.
8
+
98)
=
=
5
,
12
-x
=
10
-
??
=
1)

EXAMPLE
--------------------------------------------------------------------------------------------------------------------------------------------
Amanufacturerofdigitalcamerasestimatesthatwhenxhundred
camerasareproduced,thetotalprofitwillbeP(x)=–0.0035x
3
+
0.07x
2
+25x–200thousanddollars.
(a)Findthemarginalprofitfunction
(b)Whatisthemarginalprofitwhenthelevelofproductionisx=
10,x=50andx=80?
(c)Interprettheseresults.
RevenueR(x)Mar.Reve.MR(a)=R’(a)R(a+1)–R(a)
ProfitP(x)MarginalProfitMP(a)=P’(a)P(a+1)–P(a)

#
M
.
prote
aP(x)
=
-
0
,
0035x3
+0
.
07x
+
25x
-
200/thousanddollars)
=>
MP
=
P
=
-
3
.
0
,
0035x
+0
,
14x+
25
b)P'(10)
=
25
,
35
P(55
-c)
x
=
10
=
)q
=
10x100
=
1000
=
44about25
,
35x1000
=
25350
dollarswhen
qtby
1000
cameras
x
=
50
=q
=
5000
=
PTabout
5
,
75x1000
=
5750
dollars
when
↑by
5000
cameras
x
=
80
=q
=
8000
=
4tabout31000dollars
When
qt
by
8000
dollars

APPROXIMATION BY INCREMENTS
--------------------------------------------------------------------------------------------------------------------------------------------
Ifthetotalrevenuefunctionofagoodisgivenby100Q–Q
2
write
theexpressionforthemarginalrevenuefunction.Ifthecurrent
demandis60,estimatethechangeinthevalueoftotalrevenuedue
toa2unitincreaseinQ
()xxyyx
yy
xx
xx 





=
0
/
0
small is If .
in change The :
in change The :
:At
himy
=>
X 0
by
zy
-
0x
-
R(q)
=
100Q
-
Q
=
Mr
=
R'(q)
=
100
-
29
q
=
60
:
2unitYing
=
q
=
2
=
0 RvR'(60)
.
09
RemainO
,
Susitdecrease
inq
=
(
-
20)
.
2
=
-
40
=>
rq
=
- 0
.
8=R
=
R160)
.
q
=R
decreasebyabout
40
=
=
20
.
-0
.
8
=
16

IMPLICIT FUNCTION
-----------------------------------------------------------------------------------------------------------------------------------
Thefunctionswehavemetsofarcanbedescribedbyy=f(x)
Somefunctions,however,aredefinedimplicitlybyarelationbetween
x&ysuchasx^3+y^3=6xyy=y(x):Implicitfunction
AnequationF(x,y)=0defines
implicitlyone(ormore)
functiony=y(x):
F(x,y(x))=0
Thesefunctionsarecalled
implicitfunction
x
=
0
+
y3
=
0
y
can'
+
3
*
=
0
+y3
-
18y
+
27
y
=
3
Zy
=
=

IMPLICIT DIFFERENTIATION
-----------------------------------------------------------------------------------------------------------------------------------
MethodofImplicitDifferentiation:Differentiatingbothsidesofthe
equationF(x,y)=0withrespecttox,regardingalwaysy=y(x),and
thensolvingtheresultingequationfory’.
3) (3;at 6 :(C) curve theo tangent t theFindb/
6 if Finda/ :Example
33
33/
xyyx
xyyxy
=+
=+
(x2)"
=
2x
(02)'
=
2u
.
r
3y-
yirongigtons
=>
(x
+
yS)y
=
(Gxy)x
not
Cy
Look
at
Hoffman
Implicitdiff
xy
+
xy
a)3x2
+
3y
.
y
=
G[y
+
xy]
=
(3y2
-
(x)y
=
by
-
3x
=
y
=
(2
-
x
y
-
-
2xb)
A+(3
,
3)
:
y
=
=>
Tangent
:
%
0
↓To
y
-
3
=
-
1(x
-
3)
=y
=
-
x+
6

ECONOMIC EXAMPLE
---------------------------------------------------------------------------------------------------------------------------------------------------
SupposetheoutputatacertainfactoryisQ=2x
3
+x
2
y+y
3
units,
wherexisthenumberofhoursofskilledlaborusedandyisthe
numberofhoursofunskilledlabor.Thecurrentlaborforceconsists
of30hoursofskilledlaborand20hoursofunskilledlabor.Estimate
thechangeinunskilledlaborythatshouldbemadetooffseta1–
hourincreaseinkilledlaborxsothatoutputwillbemainteinedatits
currentlevel.

Output
a
=
f(x
,
y)
Q
=
2x
+
xy
+
y x
:
numbersofhoursof
skill
labors
y
:
numbersofhoursofunskill
labors
x
=
30
x
↓bythour
-
>
a
=
constant
=>
2x3
+
x
y
+
y
=
const
y
=
20
&
yt
by
how
much
&
um
y
=
y(x)
=
y
-y
=
y
-
0x
Xx
=
1
(2x3
+
y
+
y))
=
(const)
=
6x2
+
2xy
+
x
y3yy
=
0by
=
y
.x
I
=-
3
,
14
=>
y
=
eye-3 =>
Decreasey inabout
3
,
14hours

C
=
C(q)
unitF(c
,
q)
=
const
-
>
Implicit
C
=
Clq)
If
g
,
c
change/respect?[C
-
39
=
4275
Chain
a
9
,
9
=
g(t)
, d
I
give
n
=C=?
1500units
=>q
=
15=C
=27
=
120Cost
=
120000dollars
(c
2
-
39)
!
=
142751
++
2CC
-
99q
=
0
=>
2x120xc
-
9x15x
=>
c
=
1
,
6875
=>
Cost
increases
withrateof
1687
.
5
dollars
/week
.

RELATED RATES. EXAMPLE 2.6.8 (SECTION 2.6)
--------------------------------------------------------------------------------------------------------------------------------------------

RELATED RATES. EXAMPLE 2
-----------------------------------------------------------------------------------------------------------------------------------

DERIVATIVE & CONTINUOUS
--------------------------------------------------------------------------------------------------------------------------------------------
lim
#
im
+(x)
=
+(c)
-
hasderivative
Smooth
?
~
I
#
-
>
Derivative
=>
Continious
C#

EXAMPLE
--------------------------------------------------------------------------------------------------------------------------------------------
end
answer
x
+
0
,
=
8
continuous
ea
=
flo)lint
ing(x)
=
1
=
g(0)
=
+(
=
g()vxref
6
First
,
a
=
f(0)
=
limf(x)
x-0e
! 1x
-
>
0
=
I=L
When
a
=
1
+
d
=

INCREASING –DECREASING FUNCTION (HOFFMANN, CH. 3)
--------------------------------------------------------------------------------------------------------------------------------------------

RELATIVE (LOCAL) EXTREMA & MIN -MAX
--------------------------------------------------------------------------------------------------------------------------------------------
(C):y=f(x)hasarelative(local)maximumatx=ciff(c)f(x)x
nearc;relative(local)mininumatx=ciff(c)f(x)xnearc.
Relativemax,minarecalledrelativeextremaandareonlylocal.

EXTREMA & MIN MAX EXAMPLE
--------------------------------------------------------------------------------------------------------------------------------------------

DIMINISHING RETURNS
--------------------------------------------------------------------------------------------------------------------------------------------
TheoutputQ(t)ofafactoryworkerthoursaftercomingtowork.

INFLECTION POINTS
--------------------------------------------------------------------------------------------------------------------------------------------
Aninflectionpoint(orpointofinflection)isapoint(c,f(c))(C):y
=f(x)wheretheconcavity(thatmeansf’’)changes.Atsuchapoint,
eitherf’’(c)=0orf’’(c)doesnotexist.
() .752
poins Inflection :Example
46
ttttQ +−=

INFLECTION POINT OR DIMINISHING RETURN
--------------------------------------------------------------------------------------------------------------------------------------------
Anefficiencystudyofthemorningshiftbetween8:00A.M.and
12:00noonatafactoryindicatesthatanaverageworkerwillhave
producedQ(t)=–t
3
+9t
2
+12tthourslater.Atwhattimeduring
themorningistheworkerperformingmostandleastefficiently?

(PRICE ELASTICITY OF DEMAND)
--------------------------------------------------------------------------------------------------------------------------------------------

EOD EXAMPLE
--------------------------------------------------------------------------------------------------------------------------------------------

CLASSIFICATION
--------------------------------------------------------------------------------------------------------------------------------------------

CLASSIFICATION AND REVENUE
--------------------------------------------------------------------------------------------------------------------------------------------

EXAMPLE
--------------------------------------------------------------------------------------------------------------------------------------------
Tags